Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| import contextlib | |
| import copy | |
| import itertools | |
| import logging | |
| import numpy as np | |
| import pickle | |
| import random | |
| from typing import Callable, Union | |
| import torch | |
| import torch.utils.data as data | |
| from torch.utils.data.sampler import Sampler | |
| from detectron2.utils.serialize import PicklableWrapper | |
| __all__ = ["MapDataset", "DatasetFromList", "AspectRatioGroupedDataset", "ToIterableDataset"] | |
| logger = logging.getLogger(__name__) | |
| # copied from: https://docs.python.org/3/library/itertools.html#recipes | |
| def _roundrobin(*iterables): | |
| "roundrobin('ABC', 'D', 'EF') --> A D E B F C" | |
| # Recipe credited to George Sakkis | |
| num_active = len(iterables) | |
| nexts = itertools.cycle(iter(it).__next__ for it in iterables) | |
| while num_active: | |
| try: | |
| for next in nexts: | |
| yield next() | |
| except StopIteration: | |
| # Remove the iterator we just exhausted from the cycle. | |
| num_active -= 1 | |
| nexts = itertools.cycle(itertools.islice(nexts, num_active)) | |
| def _shard_iterator_dataloader_worker(iterable, chunk_size=1): | |
| # Shard the iterable if we're currently inside pytorch dataloader worker. | |
| worker_info = data.get_worker_info() | |
| if worker_info is None or worker_info.num_workers == 1: | |
| # do nothing | |
| yield from iterable | |
| else: | |
| # worker0: 0, 1, ..., chunk_size-1, num_workers*chunk_size, num_workers*chunk_size+1, ... | |
| # worker1: chunk_size, chunk_size+1, ... | |
| # worker2: 2*chunk_size, 2*chunk_size+1, ... | |
| # ... | |
| yield from _roundrobin( | |
| *[ | |
| itertools.islice( | |
| iterable, | |
| worker_info.id * chunk_size + chunk_i, | |
| None, | |
| worker_info.num_workers * chunk_size, | |
| ) | |
| for chunk_i in range(chunk_size) | |
| ] | |
| ) | |
| class _MapIterableDataset(data.IterableDataset): | |
| """ | |
| Map a function over elements in an IterableDataset. | |
| Similar to pytorch's MapIterDataPipe, but support filtering when map_func | |
| returns None. | |
| This class is not public-facing. Will be called by `MapDataset`. | |
| """ | |
| def __init__(self, dataset, map_func): | |
| self._dataset = dataset | |
| self._map_func = PicklableWrapper(map_func) # wrap so that a lambda will work | |
| def __len__(self): | |
| return len(self._dataset) | |
| def __iter__(self): | |
| for x in map(self._map_func, self._dataset): | |
| if x is not None: | |
| yield x | |
| class MapDataset(data.Dataset): | |
| """ | |
| Map a function over the elements in a dataset. | |
| """ | |
| def __init__(self, dataset, map_func): | |
| """ | |
| Args: | |
| dataset: a dataset where map function is applied. Can be either | |
| map-style or iterable dataset. When given an iterable dataset, | |
| the returned object will also be an iterable dataset. | |
| map_func: a callable which maps the element in dataset. map_func can | |
| return None to skip the data (e.g. in case of errors). | |
| How None is handled depends on the style of `dataset`. | |
| If `dataset` is map-style, it randomly tries other elements. | |
| If `dataset` is iterable, it skips the data and tries the next. | |
| """ | |
| self._dataset = dataset | |
| self._map_func = PicklableWrapper(map_func) # wrap so that a lambda will work | |
| self._rng = random.Random(42) | |
| self._fallback_candidates = set(range(len(dataset))) | |
| def __new__(cls, dataset, map_func): | |
| is_iterable = isinstance(dataset, data.IterableDataset) | |
| if is_iterable: | |
| return _MapIterableDataset(dataset, map_func) | |
| else: | |
| return super().__new__(cls) | |
| def __getnewargs__(self): | |
| return self._dataset, self._map_func | |
| def __len__(self): | |
| return len(self._dataset) | |
| def __getitem__(self, idx): | |
| retry_count = 0 | |
| cur_idx = int(idx) | |
| while True: | |
| data = self._map_func(self._dataset[cur_idx]) | |
| if data is not None: | |
| self._fallback_candidates.add(cur_idx) | |
| return data | |
| # _map_func fails for this idx, use a random new index from the pool | |
| retry_count += 1 | |
| self._fallback_candidates.discard(cur_idx) | |
| cur_idx = self._rng.sample(self._fallback_candidates, k=1)[0] | |
| if retry_count >= 3: | |
| logger = logging.getLogger(__name__) | |
| logger.warning( | |
| "Failed to apply `_map_func` for idx: {}, retry count: {}".format( | |
| idx, retry_count | |
| ) | |
| ) | |
| class _TorchSerializedList: | |
| """ | |
| A list-like object whose items are serialized and stored in a torch tensor. When | |
| launching a process that uses TorchSerializedList with "fork" start method, | |
| the subprocess can read the same buffer without triggering copy-on-access. When | |
| launching a process that uses TorchSerializedList with "spawn/forkserver" start | |
| method, the list will be pickled by a special ForkingPickler registered by PyTorch | |
| that moves data to shared memory. In both cases, this allows parent and child | |
| processes to share RAM for the list data, hence avoids the issue in | |
| https://github.com/pytorch/pytorch/issues/13246. | |
| See also https://ppwwyyxx.com/blog/2022/Demystify-RAM-Usage-in-Multiprocess-DataLoader/ | |
| on how it works. | |
| """ | |
| def __init__(self, lst: list): | |
| self._lst = lst | |
| def _serialize(data): | |
| buffer = pickle.dumps(data, protocol=-1) | |
| return np.frombuffer(buffer, dtype=np.uint8) | |
| logger.info( | |
| "Serializing {} elements to byte tensors and concatenating them all ...".format( | |
| len(self._lst) | |
| ) | |
| ) | |
| self._lst = [_serialize(x) for x in self._lst] | |
| self._addr = np.asarray([len(x) for x in self._lst], dtype=np.int64) | |
| self._addr = torch.from_numpy(np.cumsum(self._addr)) | |
| self._lst = torch.from_numpy(np.concatenate(self._lst)) | |
| logger.info("Serialized dataset takes {:.2f} MiB".format(len(self._lst) / 1024**2)) | |
| def __len__(self): | |
| return len(self._addr) | |
| def __getitem__(self, idx): | |
| start_addr = 0 if idx == 0 else self._addr[idx - 1].item() | |
| end_addr = self._addr[idx].item() | |
| bytes = memoryview(self._lst[start_addr:end_addr].numpy()) | |
| # @lint-ignore PYTHONPICKLEISBAD | |
| return pickle.loads(bytes) | |
| _DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD = _TorchSerializedList | |
| def set_default_dataset_from_list_serialize_method(new): | |
| """ | |
| Context manager for using custom serialize function when creating DatasetFromList | |
| """ | |
| global _DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD | |
| orig = _DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD | |
| _DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD = new | |
| yield | |
| _DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD = orig | |
| class DatasetFromList(data.Dataset): | |
| """ | |
| Wrap a list to a torch Dataset. It produces elements of the list as data. | |
| """ | |
| def __init__( | |
| self, | |
| lst: list, | |
| copy: bool = True, | |
| serialize: Union[bool, Callable] = True, | |
| ): | |
| """ | |
| Args: | |
| lst (list): a list which contains elements to produce. | |
| copy (bool): whether to deepcopy the element when producing it, | |
| so that the result can be modified in place without affecting the | |
| source in the list. | |
| serialize (bool or callable): whether to serialize the stroage to other | |
| backend. If `True`, the default serialize method will be used, if given | |
| a callable, the callable will be used as serialize method. | |
| """ | |
| self._lst = lst | |
| self._copy = copy | |
| if not isinstance(serialize, (bool, Callable)): | |
| raise TypeError(f"Unsupported type for argument `serailzie`: {serialize}") | |
| self._serialize = serialize is not False | |
| if self._serialize: | |
| serialize_method = ( | |
| serialize | |
| if isinstance(serialize, Callable) | |
| else _DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD | |
| ) | |
| logger.info(f"Serializing the dataset using: {serialize_method}") | |
| self._lst = serialize_method(self._lst) | |
| def __len__(self): | |
| return len(self._lst) | |
| def __getitem__(self, idx): | |
| if self._copy and not self._serialize: | |
| return copy.deepcopy(self._lst[idx]) | |
| else: | |
| return self._lst[idx] | |
| class ToIterableDataset(data.IterableDataset): | |
| """ | |
| Convert an old indices-based (also called map-style) dataset | |
| to an iterable-style dataset. | |
| """ | |
| def __init__( | |
| self, | |
| dataset: data.Dataset, | |
| sampler: Sampler, | |
| shard_sampler: bool = True, | |
| shard_chunk_size: int = 1, | |
| ): | |
| """ | |
| Args: | |
| dataset: an old-style dataset with ``__getitem__`` | |
| sampler: a cheap iterable that produces indices to be applied on ``dataset``. | |
| shard_sampler: whether to shard the sampler based on the current pytorch data loader | |
| worker id. When an IterableDataset is forked by pytorch's DataLoader into multiple | |
| workers, it is responsible for sharding its data based on worker id so that workers | |
| don't produce identical data. | |
| Most samplers (like our TrainingSampler) do not shard based on dataloader worker id | |
| and this argument should be set to True. But certain samplers may be already | |
| sharded, in that case this argument should be set to False. | |
| shard_chunk_size: when sharding the sampler, each worker will | |
| """ | |
| assert not isinstance(dataset, data.IterableDataset), dataset | |
| assert isinstance(sampler, Sampler), sampler | |
| self.dataset = dataset | |
| self.sampler = sampler | |
| self.shard_sampler = shard_sampler | |
| self.shard_chunk_size = shard_chunk_size | |
| def __iter__(self): | |
| if not self.shard_sampler: | |
| sampler = self.sampler | |
| else: | |
| # With map-style dataset, `DataLoader(dataset, sampler)` runs the | |
| # sampler in main process only. But `DataLoader(ToIterableDataset(dataset, sampler))` | |
| # will run sampler in every of the N worker. So we should only keep 1/N of the ids on | |
| # each worker. The assumption is that sampler is cheap to iterate so it's fine to | |
| # discard ids in workers. | |
| sampler = _shard_iterator_dataloader_worker(self.sampler, self.shard_chunk_size) | |
| for idx in sampler: | |
| yield self.dataset[idx] | |
| def __len__(self): | |
| return len(self.sampler) | |
| class AspectRatioGroupedDataset(data.IterableDataset): | |
| """ | |
| Batch data that have similar aspect ratio together. | |
| In this implementation, images whose aspect ratio < (or >) 1 will | |
| be batched together. | |
| This improves training speed because the images then need less padding | |
| to form a batch. | |
| It assumes the underlying dataset produces dicts with "width" and "height" keys. | |
| It will then produce a list of original dicts with length = batch_size, | |
| all with similar aspect ratios. | |
| """ | |
| def __init__(self, dataset, batch_size): | |
| """ | |
| Args: | |
| dataset: an iterable. Each element must be a dict with keys | |
| "width" and "height", which will be used to batch data. | |
| batch_size (int): | |
| """ | |
| self.dataset = dataset | |
| self.batch_size = batch_size | |
| self._buckets = [[] for _ in range(2)] | |
| # Hard-coded two aspect ratio groups: w > h and w < h. | |
| # Can add support for more aspect ratio groups, but doesn't seem useful | |
| def __iter__(self): | |
| for d in self.dataset: | |
| w, h = d["width"], d["height"] | |
| bucket_id = 0 if w > h else 1 | |
| bucket = self._buckets[bucket_id] | |
| bucket.append(d) | |
| if len(bucket) == self.batch_size: | |
| data = bucket[:] | |
| # Clear bucket first, because code after yield is not | |
| # guaranteed to execute | |
| del bucket[:] | |
| yield data | |