Spaces:
Runtime error
Runtime error
File size: 5,385 Bytes
8d6f4a3 4df87a7 8d6f4a3 4df87a7 8d6f4a3 4df87a7 8d6f4a3 4df87a7 8d6f4a3 4df87a7 8d6f4a3 4df87a7 8d6f4a3 4df87a7 8d6f4a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
from openai import OpenAI
from datetime import datetime, timedelta
import gradio as gr
import os
import re
import requests
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
model = "gpt-3.5-turbo"
def repo_get_all_employees_from_database():
url = "https://api.airtable.com/v0/appopGmlHujYnd6Vw/Interviewers?maxRecords=100&view=Grid%20view"
headers = {
"Authorization": os.getenv("DB_AUTH_TOKEN")
}
response = requests.get(url, headers=headers)
records = response.json()
# print("records:")
# print(records)
records_list = records['records']
employees_list = []
for record in records_list:
employee = record["fields"]
employees_list.append(employee)
return employees_list
def predict(message, history):
# print("message:")
# print(message)
history_openai_format = []
# first_message = len(history) == 0
system_content = """
You are a computing system that strictly and directly follows all instructions from the user..
"""
history_openai_format.append({"role": "system", "content": system_content})
pattern = r"For conducting an interview I need (\d+) employee.*start time is (.*), duration (\d+) hour"
data = repo_get_all_employees_from_database()
prompt = '''
{data}
###
Above is employees data in json format.
{message}
'''.format(data=data, message=message)
# print("prompt:")
# print(prompt)
match = re.search(pattern, message)
# print("match:")
# print(match)
if match:
num_employees = int(match.group(1))
duration = int(match.group(3))
start_time = datetime.strptime(match.group(2), "%B %d %Y %I %p")
end_time = end_time = start_time + timedelta(hours=duration)
date_time = '''
"start_date_time": "{start_time}", "end_date_time": "{end_time}"
'''.format(start_time=start_time, end_time=end_time)
prompt = '''
{data}
###
Above is employees data in json format.
Please choose {num_employees} employee with the lowest "interviews_conducted" value but whose "busy_dat_time_slots" doesn't contain the "given_date_time_slot" which is: {date_time}.
You should NOT output any Python code.
Lets think step-by-step:
1. Remove the employees whose "busy_date_time_slots" CONTAINS the "given_date_time_slot" specified above. Provide a list of names of remaining employees.
2. Double check your filtration. It's very important NOT to include into the remained employees list an employee whose "busy_date_time_slots" CONTAINS the "given_date_time_slot" . Type a "given_date_time_slot" value and then check that no one of remaining employees has no "given_date_time_slot" value in "busy_dat_time_slots". If someone contains - replase him.
3. Provide a list of names of remaining employees along with their "interviews_conducted" values and choose {num_employees} employee with the lowest "interviews_conducted" value.
4. Check previous step if you really chose an employee with the lowest "interviews_conducted" value.
5. At the end print ids and names of finally selected employees in json format. Please remember that in your output should be maximum {num_employees} employee.
'''.format(data=data, date_time=date_time, num_employees=num_employees)
# print("prompt:")
# print(prompt)
# print("history:")
# print(history)
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human })
history_openai_format.append({"role": "assistant", "content": assistant})
history_openai_format.append({"role": "user", "content": prompt})
global model
if ("switch to gpt-3.5" in message.lower()):
model = "gpt-3.5-turbo"
print("Switched to: {model}".format(model=model))
if ("switch to gpt-4" in message.lower()):
model = "gpt-4"
print("Switched to: {model}".format(model=model))
response = client.chat.completions.create(
model=model,
messages= history_openai_format,
temperature=0,
stream=True)
partial_message = ""
for chunk in response:
if chunk.choices[0].delta.content is not None:
partial_message = partial_message + chunk.choices[0].delta.content
yield partial_message
pre_configured_promt = "For conducting an interview I need 1 employee in given time slot: start time is March 11 2024 2 pm, duration 1 hour"
description = '''
# AI Interview Team Assistant | Empowered by Godel Technologies AI \n
\n
This is an AI Interview Team Assistant. You can ask him any questions about recruiting a team for an interview.\n
\n
You can send any regular prompts you wish or pre-configured Chain-of-Thought prompts.\n
To trigger pre-configured prompt you have to craft a prompt with next structure:
- "{pre_configured_promt}"
\n
You can switch between gpt-3.5 and gpt-4 with "Switch to gpt-3.5" or "Switch to gpt-4" prompts.\n
Language Model currently under the hood: {model}
'''.format(pre_configured_promt=pre_configured_promt)
examples = [pre_configured_promt]
additional_inputs = [gr.Dropdown(value=["gpt-3-turbo", "gpt-4"], label="Model")]
gr.ChatInterface(predict, examples=[examples], description=description).launch() |