File size: 5,385 Bytes
8d6f4a3
 
 
 
 
 
 
4df87a7
 
8d6f4a3
 
 
 
4df87a7
8d6f4a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4df87a7
 
8d6f4a3
 
4df87a7
8d6f4a3
 
 
4df87a7
8d6f4a3
 
4df87a7
8d6f4a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4df87a7
 
 
8d6f4a3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from openai import OpenAI
from datetime import datetime, timedelta
import gradio as gr
import os
import re
import requests

client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
model = "gpt-3.5-turbo"

def repo_get_all_employees_from_database():
    url = "https://api.airtable.com/v0/appopGmlHujYnd6Vw/Interviewers?maxRecords=100&view=Grid%20view"
    headers = {
        "Authorization": os.getenv("DB_AUTH_TOKEN")
    }
    response = requests.get(url, headers=headers)
    records = response.json()
    # print("records:")
    # print(records)
    records_list = records['records']
    employees_list = []
    for record in records_list:
        employee = record["fields"]
        employees_list.append(employee)
    
    return employees_list

def predict(message, history):

    # print("message:")
    # print(message)
    
    history_openai_format = []

    # first_message = len(history) == 0

    system_content = """
    You are a computing system that strictly and directly follows all instructions from the user..
    """
    history_openai_format.append({"role": "system", "content": system_content})

    pattern = r"For conducting an interview I need (\d+) employee.*start time is (.*), duration (\d+) hour"

    data = repo_get_all_employees_from_database()
    
    prompt = '''
    {data}
    ###
    Above is employees data in json format.
    {message}
    '''.format(data=data, message=message)    

    # print("prompt:")
    # print(prompt)
    
    match = re.search(pattern, message)

    # print("match:")
    # print(match)

    if match:
        num_employees = int(match.group(1))
        duration = int(match.group(3))
        start_time = datetime.strptime(match.group(2), "%B %d %Y %I %p")
        end_time = end_time = start_time + timedelta(hours=duration)

        date_time = '''
        "start_date_time": "{start_time}", "end_date_time": "{end_time}"
        '''.format(start_time=start_time, end_time=end_time)
        
        prompt = '''
        {data}
        ###
        Above is employees data in json format.
        Please choose {num_employees} employee with the lowest "interviews_conducted" value but whose "busy_dat_time_slots" doesn't contain the "given_date_time_slot" which is: {date_time}.
        You should NOT output any Python code.
        Lets think step-by-step:
        1. Remove the employees whose "busy_date_time_slots" CONTAINS the "given_date_time_slot" specified above. Provide a list of names of remaining employees.
        2. Double check your filtration. It's very important NOT to include into the remained employees list an employee whose "busy_date_time_slots" CONTAINS the "given_date_time_slot" . Type a "given_date_time_slot" value and then check that no one of remaining employees has no "given_date_time_slot" value in "busy_dat_time_slots". If someone contains - replase him.
        3. Provide a list of names of remaining employees along with their "interviews_conducted" values and choose {num_employees} employee with the lowest "interviews_conducted" value.
        4. Check previous step if you really chose an employee with the lowest "interviews_conducted" value.
        5. At the end print ids and names of finally selected employees in json format. Please remember that in your output should be maximum {num_employees} employee.
        '''.format(data=data, date_time=date_time, num_employees=num_employees)


    # print("prompt:")
    # print(prompt)

    # print("history:")
    # print(history)
    
    for human, assistant in history:
        history_openai_format.append({"role": "user", "content": human })
        history_openai_format.append({"role": "assistant", "content": assistant})
    history_openai_format.append({"role": "user", "content": prompt})

    global model
    
    if ("switch to gpt-3.5" in message.lower()):
        model = "gpt-3.5-turbo"
        print("Switched to: {model}".format(model=model))

    if ("switch to gpt-4" in message.lower()):
        model = "gpt-4"
        print("Switched to: {model}".format(model=model)) 
  
    response = client.chat.completions.create(
        model=model,
        messages= history_openai_format,
        temperature=0,
        stream=True)

    partial_message = ""
    for chunk in response:
        if chunk.choices[0].delta.content is not None:
              partial_message = partial_message + chunk.choices[0].delta.content
              yield partial_message

pre_configured_promt = "For conducting an interview I need 1 employee in given time slot: start time is March 11 2024 2 pm, duration 1 hour"

description = '''
# AI Interview Team Assistant | Empowered by Godel Technologies AI \n
\n
This is an AI Interview Team Assistant. You can ask him any questions about recruiting a team for an interview.\n
\n
You can send any regular prompts you wish or pre-configured Chain-of-Thought prompts.\n
To trigger pre-configured prompt you have to craft a prompt with next structure:
- "{pre_configured_promt}"
\n
You can switch between gpt-3.5 and gpt-4 with "Switch to gpt-3.5" or "Switch to gpt-4" prompts.\n
Language Model currently under the hood: {model}
'''.format(pre_configured_promt=pre_configured_promt)

examples = [pre_configured_promt]
additional_inputs = [gr.Dropdown(value=["gpt-3-turbo", "gpt-4"], label="Model")]
gr.ChatInterface(predict, examples=[examples], description=description).launch()