File size: 6,901 Bytes
ff9a3da
449dc64
 
 
ff9a3da
 
 
 
 
 
 
449dc64
ff9a3da
2e55854
ff9a3da
 
 
 
449dc64
ff9a3da
 
 
 
449dc64
ff9a3da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import cv2
import torch
from ultralytics import YOLO
import gradio as gr
import threading
import time
import os
import zipfile
from datetime import datetime
import pandas as pd
import tempfile

# === 模型與設定 ===
model = YOLO("best0709.pt")
TARGET_CLASS_NAME = "kumay"
save_dir = "saved_bears"
log_path = os.path.join(save_dir, "detection_log.csv")
os.makedirs(save_dir, exist_ok=True)

# === 全域狀態 ===
latest_frame = None
lock = threading.Lock()
streaming = False

# 初始化 log 檔
if not os.path.exists(log_path):
    with open(log_path, "w") as f:
        f.write("frame_id,timestamp,timestamp_diff,filename,class,confidence\n")

last_detection_time = None
frame_counter = 0

# === Webcam 持續讀取 ===
def webcam_reader():
    global latest_frame
    cap = cv2.VideoCapture(0)
    while True:
        ret, frame = cap.read()
        if ret:
            with lock:
                latest_frame = frame.copy()
        time.sleep(0.03)

# === 偵測與儲存 ===
def detect_and_save(frame):
    global last_detection_time, frame_counter
    results = model(frame)
    names = results[0].names
    has_bear = False
    best_conf = 0
    best_cls_name = ""

    for box in results[0].boxes:
        cls_id = int(box.cls[0])
        cls_name = names[cls_id]
        conf = float(box.conf[0])
        if cls_name == TARGET_CLASS_NAME and conf >= 0.85:
            has_bear = True
            if conf > best_conf:
                best_conf = conf
                best_cls_name = cls_name

    if has_bear:
        timestamp = datetime.now()
        timestamp_str = timestamp.strftime("%Y%m%d_%H%M%S_%f")[:-3]
        filename = os.path.join(save_dir, f"bear_{timestamp_str}.png")

        for box in results[0].boxes:
            cls_id = int(box.cls[0])
            cls_name = names[cls_id]
            conf = float(box.conf[0])
            if cls_name == TARGET_CLASS_NAME and conf >= 0.85:
                xyxy = box.xyxy[0].cpu().numpy().astype(int)
                cv2.putText(
                    frame,
                    f"{cls_name}: {conf:.2f}",
                    (xyxy[0], xyxy[1] - 10),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    0.6,
                    (0, 255, 0),
                    2,
                )
                cv2.rectangle(frame, (xyxy[0], xyxy[1]), (xyxy[2], xyxy[3]), (0, 255, 0), 2)

        cv2.imwrite(filename, frame)
        print(f"📸 偵測到 {best_cls_name},儲存:{filename}")
        assert os.path.exists(filename)

        diff = (timestamp - last_detection_time).total_seconds() if last_detection_time else 0.0
        with open(log_path, "a") as f:
            f.write(f"{frame_counter},{timestamp},{diff:.3f},{filename},{best_cls_name},{best_conf:.4f}\n")
        last_detection_time = timestamp

    frame_counter += 1
    return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

# === Webcam 處理 ===
def get_annotated_frame():
    global latest_frame
    with lock:
        frame = latest_frame.copy() if latest_frame is not None else None
    if frame is None:
        return None
    return detect_and_save(frame)

def streaming_loop():
    global streaming
    while streaming:
        frame = get_annotated_frame()
        if frame is not None:
            with lock:
                cv2.imwrite("latest_stream.png", cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
        time.sleep(0.2)

def start_stream():
    global streaming
    streaming = True
    threading.Thread(target=streaming_loop, daemon=True).start()

def stop_stream():
    global streaming
    streaming = False

# === 影片偵測 ===
def detect_video(video_path):
    cap = cv2.VideoCapture(video_path)
    fps = cap.get(cv2.CAP_PROP_FPS)
    W = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    H = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

    output_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
    out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (W, H))

    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
        annotated = detect_and_save(frame)
        out.write(cv2.cvtColor(annotated, cv2.COLOR_RGB2BGR))

    cap.release()
    out.release()
    print(f"✅ 影片處理完成:{output_path}")
    return output_path

# === ZIP 功能 ===
def create_zip():
    zip_path = "detection_package.zip"
    with zipfile.ZipFile(zip_path, "w") as zipf:
        for fname in os.listdir(save_dir):
            fpath = os.path.join(save_dir, fname)
            if os.path.isfile(fpath):
                zipf.write(fpath, arcname=os.path.join("saved_bears", fname))
        if os.path.exists(log_path):
            zipf.write(log_path, arcname="detection_log.csv")
    return zip_path

def read_csv():
    if os.path.exists(log_path):
        df = pd.read_csv(log_path)
        if "frame_id" in df.columns:
            return df.sort_values(by="frame_id", ascending=False).reset_index(drop=True)
        return df
    return []

def get_latest_image():
    return "latest_stream.png" if os.path.exists("latest_stream.png") else None

# === 啟動 webcam 執行緒 ===
threading.Thread(target=webcam_reader, daemon=True).start()

# === Gradio UI ===
with gr.Blocks() as demo:
    gr.Markdown("## 🐻 台灣黑熊偵測系統")

    with gr.Tab("📹 上傳影片辨識"):
        gr.Markdown("上傳影片,逐幀偵測台灣黑熊,並自動儲存出現畫面")
        video_input = gr.Video()
        video_output = gr.Video()
        video_button = gr.Button("上傳並分析影片")
        video_button.click(fn=detect_video, inputs=video_input, outputs=video_output)

    with gr.Tab("📷 即時攝影機偵測"):
        gr.Markdown("啟用 webcam 進行即時偵測,若出現台灣黑熊則自動儲存影像")
        webcam_output = gr.Image(
            label="即時辨識結果",
            interactive=False,
            type="filepath",
            value=get_latest_image,
            every=0.2
        )
        with gr.Row():
            start_btn = gr.Button("▶️ 開始直播")
            stop_btn = gr.Button("⏹ 停止直播")
        start_btn.click(fn=start_stream, inputs=[], outputs=[])
        stop_btn.click(fn=stop_stream, inputs=[], outputs=[])

    with gr.Tab("📁 下載與預覽"):
        gr.Markdown("### 預覽與下載偵測圖片與紀錄檔")
        log_df = gr.Dataframe(label="detection_log.csv 預覽", interactive=False)
        load_log_btn = gr.Button("🔄 重新載入紀錄檔")
        load_log_btn.click(fn=read_csv, outputs=log_df)

        csv_file = gr.File(value=log_path, label="⬇️ 下載 CSV 檔")

        gr.Markdown("### 打包圖片與紀錄檔(.zip)")
        zip_btn = gr.Button("📦 產生 ZIP 檔")
        zip_file = gr.File(label="⬇️ 點我下載壓縮檔")
        zip_btn.click(fn=create_zip, outputs=zip_file)

# 啟動
if __name__ == "__main__":
    demo.launch()