import pandas as pd import numpy as np import faiss import pickle from datasets import load_dataset from sentence_transformers import SentenceTransformer from llama_cpp import Llama import gradio as gr # ========================= # STEP 1: 載入 Hugging Face Dataset # ========================= dataset = load_dataset("pcreem/37", split="train") df = dataset.to_pandas() df.columns = df.columns.str.strip() # 清理欄位空白 def make_passage(row): return f"""藥品名稱:{row['中文品名']} 英文品名:{row['英文品名']} 主成分:{row['主成分略述']} 劑型:{row['劑型']} 適應症:{row['適應症']} 用法用量:{row['用法用量']} 申請商:{row['申請商名稱']} 製造商:{row['製造商名稱']} 製造廠地址:{row['製造廠廠址']} 包裝:{row['包裝']} 有效日期:{row['有效日期']} 許可證字號:{row['許可證字號']}""" df["retrieval_passage"] = df.apply(make_passage, axis=1) passages = df["retrieval_passage"].tolist() # ========================= # STEP 2: 建立 FAISS 檢索 # ========================= embedding_model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2') embeddings = embedding_model.encode(passages, show_progress_bar=True) dimension = embeddings.shape[1] index = faiss.IndexFlatL2(dimension) index.add(np.array(embeddings).astype("float32")) # ========================= # STEP 3: 載入 Llama 模型 # ========================= from huggingface_hub import hf_hub_download model_path = hf_hub_download( repo_id="chienweichang/Llama-3-Taiwan-8B-Instruct-GGUF", filename="llama-3-taiwan-8B-instruct-q5_1.gguf" ) llm = Llama( model_path=model_path, n_gpu_layers=35, n_ctx=2048, seed=42, verbose=False, ) # ========================= # STEP 4: 定義查詢函式 # ========================= def rag_qa(query, k=3): query_embedding = embedding_model.encode([query]) D, I = index.search(np.array(query_embedding).astype("float32"), k=k) top_passages = [passages[idx] for idx in I[0]] context = "\n\n---\n\n".join(top_passages) system_prompt = "你是一位專業藥師,根據以下藥品資料,回答使用者的問題,請用簡潔中文說明並避免虛構資訊。\n" user_prompt = f"{system_prompt}\n以下是參考資料:\n\n{context}\n\n使用者問題:{query}" chat_prompt = f"<|start_header_id|>user<|end_header_id|>\n{user_prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n" output = llm(chat_prompt, max_tokens=512, temperature=0.7, top_p=0.9, stop=["<|eot_id|>"]) answer = output["choices"][0]["text"] return answer.strip() # ========================= # STEP 5: Gradio 介面 # ========================= gr.Interface( fn=rag_qa, inputs=gr.Textbox(label="請輸入問題", placeholder="例如:感冒藥有什麼選擇?"), outputs=gr.Textbox(label="藥師回答"), title="台灣藥品問答系統", description="輸入藥品相關問題,我會根據台灣合法藥品資料庫回答你!" ).launch()