Update app.py
Browse files
app.py
CHANGED
|
@@ -1,19 +1,59 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import utils
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
|
|
|
| 5 |
|
| 6 |
-
# Function to ingest a new file into the system
|
| 7 |
class VectorData():
|
| 8 |
def __init__(self):
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
self.ingested_files = []
|
| 11 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def add_file(self,file):
|
| 14 |
if file is not None:
|
| 15 |
self.ingested_files.append(file.name.split('/')[-1])
|
| 16 |
self.retriever, self.vectorstore = utils.add_doc(file,self.vectorstore)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
return [[name] for name in self.ingested_files]
|
| 18 |
|
| 19 |
def delete_file_by_name(self,file_name):
|
|
@@ -26,14 +66,15 @@ class VectorData():
|
|
| 26 |
self.ingested_files.clear()
|
| 27 |
self.retriever, self.vectorstore = utils.delete_all_doc(self.vectorstore)
|
| 28 |
return []
|
|
|
|
|
|
|
| 29 |
|
| 30 |
# Function to handle question answering
|
| 31 |
def answer_question(question):
|
| 32 |
if question.strip():
|
| 33 |
-
return f
|
| 34 |
return "Please enter a question."
|
| 35 |
|
| 36 |
-
data_obj = VectorData()
|
| 37 |
|
| 38 |
# Define the Gradio interface
|
| 39 |
with gr.Blocks() as rag_interface:
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import utils
|
| 3 |
+
from langchain_mistralai import ChatMistralAI
|
| 4 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 5 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 6 |
+
from langchain_community.vectorstores import Chroma
|
| 7 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 8 |
+
from langchain_core.runnables import RunnablePassthrough
|
| 9 |
+
import torch
|
| 10 |
|
| 11 |
+
import os
|
| 12 |
+
os.environ['MISTRAL_API_KEY'] = 'XuyOObDE7trMbpAeI7OXYr3dnmoWy3L0'
|
| 13 |
|
|
|
|
| 14 |
class VectorData():
|
| 15 |
def __init__(self):
|
| 16 |
+
embedding_model_name = 'nomic-ai/nomic-embed-text-v1.5'
|
| 17 |
+
|
| 18 |
+
model_kwargs = {'device':'cuda' if torch.cuda.is_available() else 'cpu',"trust_remote_code": True}
|
| 19 |
+
|
| 20 |
+
self.embeddings = HuggingFaceEmbeddings(
|
| 21 |
+
model_name=embedding_model_name,
|
| 22 |
+
model_kwargs=model_kwargs
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
self.vectorstore = Chroma(persist_directory="chroma_db", embedding_function=self.embeddings)
|
| 26 |
+
self.retriever = self.vectorstore.as_retriever()
|
| 27 |
self.ingested_files = []
|
| 28 |
+
self.prompt = ChatPromptTemplate.from_messages(
|
| 29 |
+
[
|
| 30 |
+
(
|
| 31 |
+
"system",
|
| 32 |
+
"""Answer the question based on the given context. Dont give any ans if context is not valid to question. Always give the source of context:
|
| 33 |
+
{context}
|
| 34 |
+
""",
|
| 35 |
+
),
|
| 36 |
+
("human", "{question}"),
|
| 37 |
+
]
|
| 38 |
+
)
|
| 39 |
+
self.llm = ChatMistralAI(model="mistral-large-latest")
|
| 40 |
+
self.rag_chain = (
|
| 41 |
+
{"context": self.retriever, "question": RunnablePassthrough()}
|
| 42 |
+
| self.prompt
|
| 43 |
+
| self.llm
|
| 44 |
+
| StrOutputParser()
|
| 45 |
+
)
|
| 46 |
|
| 47 |
def add_file(self,file):
|
| 48 |
if file is not None:
|
| 49 |
self.ingested_files.append(file.name.split('/')[-1])
|
| 50 |
self.retriever, self.vectorstore = utils.add_doc(file,self.vectorstore)
|
| 51 |
+
self.rag_chain = (
|
| 52 |
+
{"context": self.retriever, "question": RunnablePassthrough()}
|
| 53 |
+
| self.prompt
|
| 54 |
+
| self.llm
|
| 55 |
+
| StrOutputParser()
|
| 56 |
+
)
|
| 57 |
return [[name] for name in self.ingested_files]
|
| 58 |
|
| 59 |
def delete_file_by_name(self,file_name):
|
|
|
|
| 66 |
self.ingested_files.clear()
|
| 67 |
self.retriever, self.vectorstore = utils.delete_all_doc(self.vectorstore)
|
| 68 |
return []
|
| 69 |
+
|
| 70 |
+
data_obj = VectorData()
|
| 71 |
|
| 72 |
# Function to handle question answering
|
| 73 |
def answer_question(question):
|
| 74 |
if question.strip():
|
| 75 |
+
return f'{data_obj.rag_chain.invoke(question)}'
|
| 76 |
return "Please enter a question."
|
| 77 |
|
|
|
|
| 78 |
|
| 79 |
# Define the Gradio interface
|
| 80 |
with gr.Blocks() as rag_interface:
|