Spaces:
Running
Running
File size: 3,546 Bytes
c02e3db 2f96bb8 71a8799 2f96bb8 9b5b26a 34d5e78 2f96bb8 34d5e78 2e6775a c02e3db 34d5e78 2f96bb8 34d5e78 c02e3db 0f668a0 c02e3db 0f668a0 c02e3db 0f668a0 34d5e78 339655b 34d5e78 2e6775a 2f96bb8 2e6775a c02e3db 2f96bb8 2e6775a 2f96bb8 2e6775a c02e3db 2e6775a 2f96bb8 71a8799 73e52d4 bb8d29a 73e52d4 c02e3db bb8d29a 73e52d4 c02e3db bb8d29a 2f96bb8 71a8799 c02e3db 71a8799 c02e3db 71a8799 9b5b26a bb8d29a 2f96bb8 71a8799 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
import feedparser
import urllib.parse
import yaml
import gradio as gr
from smolagents import CodeAgent, HfApiModel, tool
@tool
def fetch_latest_arxiv_papers(keywords: list, num_results: int = 3) -> list:
"""Fetches the latest research papers from arXiv based on provided keywords."""
try:
print(f"DEBUG: Searching arXiv papers with keywords: {keywords}") # Debug input
# ✅ Properly format query with +AND+ for multiple keywords
query = "+AND+".join([f"all:{kw}" for kw in keywords])
query_encoded = urllib.parse.quote(query) # Encode spaces and special characters
url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results={num_results}&sortBy=submittedDate&sortOrder=descending"
print(f"DEBUG: Query URL - {url}") # Debug URL
feed = feedparser.parse(url)
papers = []
for entry in feed.entries:
papers.append({
"title": entry.title,
"authors": ", ".join(author.name for author in entry.authors),
"year": entry.published[:4], # Extract year
"abstract": entry.summary,
"link": entry.link
})
return papers
except Exception as e:
print(f"ERROR: {str(e)}") # Debug errors
return [f"Error fetching research papers: {str(e)}"]
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
custom_role_conversions=None,
)
# Load prompt templates
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
# Create the AI Agent
agent = CodeAgent(
model=model,
tools=[fetch_latest_arxiv_papers], # Properly registered tool
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name="ScholarAgent",
description="An AI agent that fetches the latest research papers from arXiv based on user-defined keywords and filters.",
prompt_templates=prompt_templates
)
# Define Gradio Search Function
def search_papers(user_input):
keywords = [kw.strip() for kw in user_input.split(",") if kw.strip()] # Ensure valid keywords
print(f"DEBUG: Received input keywords - {keywords}") # Debug user input
if not keywords:
print("DEBUG: No valid keywords provided.")
return "Error: Please enter at least one valid keyword."
results = fetch_latest_arxiv_papers(keywords, num_results=3) # Fetch 3 results
print(f"DEBUG: Results received - {results}") # Debug function output
if isinstance(results, list) and results and isinstance(results[0], dict):
return "\n\n".join([
f"**Title:** {paper['title']}\n**Authors:** {paper['authors']}\n**Year:** {paper['year']}\n**Abstract:** {paper['abstract']}\n[Read More]({paper['link']})"
for paper in results
])
print("DEBUG: No results found.")
return "No results found. Try different keywords."
# Create Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# arXiv Research Paper Fetcher")
keyword_input = gr.Textbox(label="Enter keywords (comma-separated)", placeholder="e.g., deep learning, reinforcement learning")
output_display = gr.Markdown()
search_button = gr.Button("Search")
search_button.click(search_papers, inputs=[keyword_input], outputs=[output_display])
print("DEBUG: Gradio UI is running. Waiting for user input...")
# Launch Gradio App
demo.launch()
|