File size: 7,104 Bytes
8a5c1ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
# Copyright 2025-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright 2025-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import sys
import time
import torch
from data import prepare_benchmark_prompts
from run import measure_inference_time
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, set_seed
from utils import (
BenchmarkConfig,
get_memory_usage,
init_accelerator,
)
def run_base_model_benchmark(benchmark_config: BenchmarkConfig, print_fn=print) -> dict:
"""Run benchmark for base model only and return results."""
print_fn(f"Running base model benchmark for: {benchmark_config.model_id}")
print_fn("Initializing accelerator...")
init_accelerator()
set_seed(benchmark_config.seed)
print_fn(f"Loading base model: {benchmark_config.model_id}")
tokenizer = AutoTokenizer.from_pretrained(benchmark_config.model_id)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model_kwargs = {
"device_map": "auto" if (torch.cuda.is_available() or torch.xpu.is_available()) else None,
}
if benchmark_config.dtype == "float32":
model_kwargs["torch_dtype"] = torch.float32
elif benchmark_config.dtype == "float16":
model_kwargs["torch_dtype"] = torch.float16
elif benchmark_config.dtype == "bfloat16":
model_kwargs["torch_dtype"] = torch.bfloat16
if benchmark_config.use_8bit:
model_kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True
)
elif benchmark_config.use_4bit:
model_kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=model_kwargs.get("torch_dtype", torch.float16),
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
model = AutoModelForCausalLM.from_pretrained(benchmark_config.model_id, **model_kwargs)
ram, accelerator_allocated, accelerator_reserved = get_memory_usage()
print_fn(f"Memory after model load - RAM: {ram:.2f}MB, {model.device.type.upper()}: {accelerator_allocated:.2f}MB")
print_fn("Preparing benchmark prompts...")
prompts = prepare_benchmark_prompts(
config=benchmark_config.to_dict(),
tokenizer=tokenizer,
max_input_length=None,
seed=benchmark_config.seed,
)
# Measure base model inference for each prompt category
print_fn("Measuring base model inference times...")
base_inference_results = measure_inference_time(
model,
tokenizer,
prompts,
max_new_tokens=benchmark_config.max_new_tokens,
num_runs=benchmark_config.num_inference_runs,
print_fn=print_fn,
category_generation_params=benchmark_config.category_generation_params,
)
result = {
"model_id": benchmark_config.model_id,
"benchmark_config": benchmark_config.to_dict(),
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S"),
"inference_results": base_inference_results,
"memory_info": {
"ram_mb": ram,
"accelerator_allocated_mb": accelerator_allocated,
"accelerator_reserved_mb": accelerator_reserved,
},
}
return result
def save_base_results(result: dict, model_id: str) -> str:
"""Save base model results with a filename based on model and config."""
base_results_dir = os.path.join(os.path.dirname(__file__), "base_results")
os.makedirs(base_results_dir, exist_ok=True)
model_name = model_id.replace("/", "_").replace("-", "_")
filename = f"base_{model_name}.json"
filepath = os.path.join(base_results_dir, filename)
with open(filepath, "w") as f:
json.dump(result, f, indent=2)
return filepath
def main():
"""Main entry point for the base model benchmark runner."""
parser = argparse.ArgumentParser(description="Run base model benchmarks")
parser.add_argument("--verbose", "-v", action="store_true", help="Enable verbose output")
parser.add_argument("--force", "-f", action="store_true", help="Force re-run even if results exist")
args = parser.parse_args()
print_fn = print if args.verbose else lambda *args, **kwargs: None
default_config_path = os.path.join(os.path.dirname(__file__), "default_benchmark_params.json")
benchmark_config = BenchmarkConfig.from_json(default_config_path)
model_name = benchmark_config.model_id.replace("/", "_").replace("-", "_")
base_results_dir = os.path.join(os.path.dirname(__file__), "base_results")
filename = f"base_{model_name}.json"
filepath = os.path.join(base_results_dir, filename)
if os.path.exists(filepath) and not args.force:
print(f"Base results already exist at: {filepath}")
print("Use --force to re-run the benchmark")
return 0
print_fn(f"Running base model benchmark for: {benchmark_config.model_id}")
result = run_base_model_benchmark(benchmark_config, print_fn=print_fn)
saved_path = save_base_results(result, benchmark_config.model_id)
device_type = torch.accelerator.current_accelerator().type if hasattr(torch, "accelerator") else "cuda"
print(f"Base model results saved to: {saved_path}")
print("\nBase Model Benchmark Summary:")
print(f"Model: {result['model_id']}")
print(
f"Memory Usage - RAM: {result['memory_info']['ram_mb']:.2f}MB, {device_type.upper()}: {result['memory_info']['accelerator_allocated_mb']:.2f}MB"
)
print("\nInference Times by Category:")
for category, time_val in result["inference_results"]["inference_times"].items():
time_per_token = result["inference_results"]["time_per_token"][category]
tokens = result["inference_results"]["generated_tokens"][category]
print(f" {category}: {time_val:.4f}s ({time_per_token:.6f}s/token, {tokens:.1f} tokens)")
return 0
if __name__ == "__main__":
sys.exit(main())
|