File size: 7,104 Bytes
8a5c1ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Copyright 2025-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Copyright 2025-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import json
import os
import sys
import time

import torch
from data import prepare_benchmark_prompts
from run import measure_inference_time
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, set_seed
from utils import (
    BenchmarkConfig,
    get_memory_usage,
    init_accelerator,
)


def run_base_model_benchmark(benchmark_config: BenchmarkConfig, print_fn=print) -> dict:
    """Run benchmark for base model only and return results."""

    print_fn(f"Running base model benchmark for: {benchmark_config.model_id}")

    print_fn("Initializing accelerator...")
    init_accelerator()

    set_seed(benchmark_config.seed)

    print_fn(f"Loading base model: {benchmark_config.model_id}")
    tokenizer = AutoTokenizer.from_pretrained(benchmark_config.model_id)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token

    model_kwargs = {
        "device_map": "auto" if (torch.cuda.is_available() or torch.xpu.is_available()) else None,
    }

    if benchmark_config.dtype == "float32":
        model_kwargs["torch_dtype"] = torch.float32
    elif benchmark_config.dtype == "float16":
        model_kwargs["torch_dtype"] = torch.float16
    elif benchmark_config.dtype == "bfloat16":
        model_kwargs["torch_dtype"] = torch.bfloat16

    if benchmark_config.use_8bit:
        model_kwargs["quantization_config"] = BitsAndBytesConfig(
            load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True
        )
    elif benchmark_config.use_4bit:
        model_kwargs["quantization_config"] = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=model_kwargs.get("torch_dtype", torch.float16),
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
        )

    model = AutoModelForCausalLM.from_pretrained(benchmark_config.model_id, **model_kwargs)

    ram, accelerator_allocated, accelerator_reserved = get_memory_usage()
    print_fn(f"Memory after model load - RAM: {ram:.2f}MB, {model.device.type.upper()}: {accelerator_allocated:.2f}MB")

    print_fn("Preparing benchmark prompts...")
    prompts = prepare_benchmark_prompts(
        config=benchmark_config.to_dict(),
        tokenizer=tokenizer,
        max_input_length=None,
        seed=benchmark_config.seed,
    )

    # Measure base model inference for each prompt category
    print_fn("Measuring base model inference times...")
    base_inference_results = measure_inference_time(
        model,
        tokenizer,
        prompts,
        max_new_tokens=benchmark_config.max_new_tokens,
        num_runs=benchmark_config.num_inference_runs,
        print_fn=print_fn,
        category_generation_params=benchmark_config.category_generation_params,
    )

    result = {
        "model_id": benchmark_config.model_id,
        "benchmark_config": benchmark_config.to_dict(),
        "timestamp": time.strftime("%Y-%m-%d %H:%M:%S"),
        "inference_results": base_inference_results,
        "memory_info": {
            "ram_mb": ram,
            "accelerator_allocated_mb": accelerator_allocated,
            "accelerator_reserved_mb": accelerator_reserved,
        },
    }

    return result


def save_base_results(result: dict, model_id: str) -> str:
    """Save base model results with a filename based on model and config."""
    base_results_dir = os.path.join(os.path.dirname(__file__), "base_results")
    os.makedirs(base_results_dir, exist_ok=True)

    model_name = model_id.replace("/", "_").replace("-", "_")
    filename = f"base_{model_name}.json"
    filepath = os.path.join(base_results_dir, filename)

    with open(filepath, "w") as f:
        json.dump(result, f, indent=2)

    return filepath


def main():
    """Main entry point for the base model benchmark runner."""
    parser = argparse.ArgumentParser(description="Run base model benchmarks")
    parser.add_argument("--verbose", "-v", action="store_true", help="Enable verbose output")
    parser.add_argument("--force", "-f", action="store_true", help="Force re-run even if results exist")
    args = parser.parse_args()

    print_fn = print if args.verbose else lambda *args, **kwargs: None

    default_config_path = os.path.join(os.path.dirname(__file__), "default_benchmark_params.json")
    benchmark_config = BenchmarkConfig.from_json(default_config_path)

    model_name = benchmark_config.model_id.replace("/", "_").replace("-", "_")
    base_results_dir = os.path.join(os.path.dirname(__file__), "base_results")
    filename = f"base_{model_name}.json"
    filepath = os.path.join(base_results_dir, filename)

    if os.path.exists(filepath) and not args.force:
        print(f"Base results already exist at: {filepath}")
        print("Use --force to re-run the benchmark")
        return 0

    print_fn(f"Running base model benchmark for: {benchmark_config.model_id}")

    result = run_base_model_benchmark(benchmark_config, print_fn=print_fn)

    saved_path = save_base_results(result, benchmark_config.model_id)
    device_type = torch.accelerator.current_accelerator().type if hasattr(torch, "accelerator") else "cuda"
    print(f"Base model results saved to: {saved_path}")

    print("\nBase Model Benchmark Summary:")
    print(f"Model: {result['model_id']}")
    print(
        f"Memory Usage - RAM: {result['memory_info']['ram_mb']:.2f}MB, {device_type.upper()}: {result['memory_info']['accelerator_allocated_mb']:.2f}MB"
    )

    print("\nInference Times by Category:")
    for category, time_val in result["inference_results"]["inference_times"].items():
        time_per_token = result["inference_results"]["time_per_token"][category]
        tokens = result["inference_results"]["generated_tokens"][category]
        print(f"  {category}: {time_val:.4f}s ({time_per_token:.6f}s/token, {tokens:.1f} tokens)")

    return 0


if __name__ == "__main__":
    sys.exit(main())