File size: 17,898 Bytes
8a5c1ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
# Copyright 2025-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utilities for PEFT benchmarking.
"""
import datetime
import json
import os
import platform
import subprocess
from dataclasses import asdict, dataclass, field
from enum import Enum
from typing import Any, Callable, Optional
from peft.utils import infer_device
import psutil
import torch
FILE_NAME_BENCHMARK_PARAMS = "benchmark_params.json"
FILE_NAME_DEFAULT_CONFIG = "default_benchmark_params.json"
RESULT_PATH = os.path.join(os.path.dirname(__file__), "results")
RESULT_PATH_TEMP = os.path.join(os.path.dirname(__file__), "temporary_results")
RESULT_PATH_CANCELLED = os.path.join(os.path.dirname(__file__), "cancelled_results")
class BenchmarkStatus(Enum):
"""Status of a benchmark run."""
SUCCESS = "success"
FAILED = "failed"
CANCELLED = "cancelled"
RUNNING = "running"
@dataclass
class BenchmarkResult:
"""Container for benchmark results."""
experiment_name: str
status: BenchmarkStatus
model_id: str
run_info: dict = field(default_factory=dict)
generation_info: dict = field(default_factory=dict)
meta_info: dict = field(default_factory=dict)
def __post_init__(self):
"""Initialize structured data format."""
device = infer_device()
torch_accelerator_module = getattr(torch, device, torch.cuda)
self.run_info = {
"timestamp": datetime.datetime.now(tz=datetime.timezone.utc).isoformat(),
"duration": 0.0,
"status": self.status.value,
"hardware": {
"num_accelerators": torch_accelerator_module.device_count() if torch_accelerator_module.is_available() else 0,
"accelerator_type": torch_accelerator_module.get_device_name(0) if torch_accelerator_module.is_available() else "N/A",
"cuda_version": torch.version.cuda if torch.cuda.is_available() else "N/A",
"pytorch_version": torch.__version__,
},
}
self.meta_info = {
"model_id": self.model_id,
"parameters": {
"base_params": 0,
"trainable_params": 0,
"total_params": 0,
"param_ratio": 0.0,
},
"model_size": {
"base_model_size_mb": 0.0,
"adapter_size_mb": 0.0,
},
"package_info": {
"transformers-version": None,
"transformers-commit-hash": None,
"peft-version": None,
"peft-commit-hash": None,
"datasets-version": None,
"datasets-commit-hash": None,
"bitsandbytes-version": None,
"bitsandbytes-commit-hash": None,
"torch-version": torch.__version__,
"torch-commit-hash": None,
},
"system_info": {
"system": platform.system(),
"release": platform.release(),
"version": platform.version(),
"machine": platform.machine(),
"processor": platform.processor(),
"accelerator": torch_accelerator_module.get_device_name(0) if torch_accelerator_module.is_available() else "N/A",
},
}
self.generation_info = {
"memory": {
"peak_accelerator_memory_mb": 0.0,
"peak_ram_memory_mb": 0.0,
"memory_logs": [],
},
"by_category": {},
"overall": {},
}
def update_meta_info(self, param_counts: dict, size_info: dict, package_info: Optional[dict] = None):
"""Update model metadata information."""
self.meta_info["parameters"].update(param_counts)
self.meta_info["model_size"].update(size_info)
if package_info:
self.meta_info["package_info"].update(package_info)
def update_generation_info(self, memory_data: Optional[dict] = None, performance_metrics: Optional[dict] = None):
"""Update generation performance information, primarily for memory and high-level performance."""
if memory_data:
self.generation_info["memory"].update(memory_data)
if performance_metrics: # For things like overall tokens/sec if calculated
self.generation_info.update(performance_metrics)
def add_memory_log(self, stage: str, ram_mb: float, accelerator_allocated_mb: float, accelerator_reserved_mb: float):
"""Add a memory usage log entry to generation_info."""
self.generation_info["memory"]["memory_logs"].append(
{
"stage": stage,
"ram_mb": ram_mb,
"accelerator_allocated_mb": accelerator_allocated_mb,
"accelerator_reserved_mb": accelerator_reserved_mb,
}
)
def add_metrics_for_category(self, category: str, metrics: dict, individual_samples: list = None):
"""Add metrics for a specific prompt category under generation_info."""
category_data = {"metrics": metrics, "samples": individual_samples if individual_samples is not None else []}
self.generation_info["by_category"][category] = category_data
def update_run_info(
self,
duration: float,
status: BenchmarkStatus,
error: Optional[str] = None,
peft_config: Optional[dict] = None,
benchmark_config: Optional[dict] = None,
):
"""Update run information."""
self.run_info["duration"] = duration
self.run_info["status"] = status.value
if error:
self.run_info["error"] = error
if peft_config:
self.run_info["peft_config"] = peft_config
if benchmark_config:
self.run_info["benchmark_config"] = benchmark_config
def compute_overall_metrics(self):
"""Compute overall metrics across all categories within generation_info."""
if not self.generation_info["by_category"]:
return
categories = self.generation_info["by_category"]
key_metrics = [
"inference_time",
"base_inference_time",
"inference_overhead_pct",
"time_per_token",
"generated_tokens",
]
for metric in key_metrics:
values = []
for category_data in categories.values():
if "metrics" in category_data and metric in category_data["metrics"]:
values.append(category_data["metrics"][metric])
if values:
self.generation_info["overall"][metric] = sum(values) / len(values)
def to_dict(self) -> dict[str, Any]:
"""Convert result to dictionary."""
self.compute_overall_metrics()
return {
"run_info": self.run_info,
"generation_info": self.generation_info,
"meta_info": self.meta_info,
}
def save(self, path: Optional[str] = None):
"""Save result to JSON file."""
if path is None:
peft_branch = get_peft_branch()
if self.status == BenchmarkStatus.CANCELLED:
base_path = RESULT_PATH_CANCELLED
elif peft_branch != "main":
base_path = RESULT_PATH_TEMP
elif self.status == BenchmarkStatus.SUCCESS:
base_path = RESULT_PATH
elif self.status == BenchmarkStatus.FAILED:
base_path = RESULT_PATH_CANCELLED
else:
base_path = RESULT_PATH_TEMP
filename = f"{self.experiment_name}.json"
path = os.path.join(base_path, filename)
os.makedirs(os.path.dirname(path), exist_ok=True)
with open(path, "w") as f:
json.dump(self.to_dict(), f, indent=2)
return path
@dataclass
class BenchmarkConfig:
"""Configuration for benchmarking PEFT methods."""
model_id: str
seed: int
num_inference_runs: int
max_new_tokens: int
dtype: str = "float16"
use_4bit: bool = False
use_8bit: bool = False
category_generation_params: Optional[dict] = None
def __post_init__(self) -> None:
"""Validate configuration."""
if not isinstance(self.model_id, str):
raise ValueError(f"Invalid model_id: {self.model_id}")
if self.seed < 0:
raise ValueError(f"Invalid seed: {self.seed}")
if self.num_inference_runs <= 0:
raise ValueError(f"Invalid num_inference_runs: {self.num_inference_runs}")
if self.max_new_tokens <= 0:
raise ValueError(f"Invalid max_new_tokens: {self.max_new_tokens}")
@classmethod
def from_dict(cls, config_dict: dict) -> "BenchmarkConfig":
"""Create config from dictionary."""
valid_keys = set(cls.__dataclass_fields__.keys())
filtered_dict = {k: v for k, v in config_dict.items() if k in valid_keys}
return cls(**filtered_dict)
@classmethod
def from_json(cls, json_path: str) -> "BenchmarkConfig":
"""Load config from JSON file."""
with open(json_path) as f:
config_dict = json.load(f)
return cls.from_dict(config_dict)
def to_dict(self) -> dict[str, Any]:
"""Convert config to dictionary."""
result = asdict(self)
return result
def save(self, path: str) -> None:
"""Save config to JSON file."""
with open(path, "w") as f:
json.dump(self.to_dict(), f, indent=2)
def merge_from_dict(self, config_dict: dict) -> None:
"""Merge settings from a dictionary into this config object.
Keys in config_dict will override existing attributes.
"""
for key, value in config_dict.items():
if hasattr(self, key):
setattr(self, key, value)
def validate_experiment_path(path: str) -> tuple[str, "BenchmarkConfig"]:
"""Validate experiment path, load and merge configs, and return them."""
if not os.path.exists(path):
raise FileNotFoundError(f"Experiment path not found: {path}")
path_parts = os.path.normpath(path).split(os.sep)
try:
experiments_idx = path_parts.index("experiments")
except ValueError:
experiment_name = os.path.basename(path.rstrip(os.sep))
else:
if experiments_idx + 1 < len(path_parts):
method_name = path_parts[experiments_idx + 1]
remaining_parts = path_parts[experiments_idx + 2 :]
if remaining_parts:
remaining_name = "-".join(remaining_parts)
experiment_name = f"{method_name}--{remaining_name}"
else:
experiment_name = method_name
else:
experiment_name = os.path.basename(path.rstrip(os.sep))
default_config_path = os.path.join(os.path.dirname(__file__), FILE_NAME_DEFAULT_CONFIG)
experiment_benchmark_params_path = os.path.join(path, FILE_NAME_BENCHMARK_PARAMS)
if not os.path.exists(default_config_path):
raise FileNotFoundError(f"Default configuration file not found: {default_config_path}. This is required.")
benchmark_config = BenchmarkConfig.from_json(default_config_path)
print(f"Loaded default configuration from {default_config_path}")
if os.path.exists(experiment_benchmark_params_path):
with open(experiment_benchmark_params_path) as f:
experiment_specific_params = json.load(f)
benchmark_config.merge_from_dict(experiment_specific_params)
print(f"Loaded and merged experiment-specific parameters from {experiment_benchmark_params_path}")
else:
print(f"No {FILE_NAME_BENCHMARK_PARAMS} found in {path}. Using only default configuration.")
return experiment_name, benchmark_config
def get_memory_usage() -> tuple[float, float, float]:
"""Get current memory usage (RAM and accelerator)."""
process = psutil.Process(os.getpid())
ram_usage_bytes = process.memory_info().rss
ram_usage_mb = ram_usage_bytes / (1024 * 1024)
if torch.cuda.is_available():
accelerator_allocated = torch.cuda.memory_allocated()
accelerator_reserved = torch.cuda.memory_reserved()
accelerator_allocated_mb = accelerator_allocated / (1024 * 1024)
accelerator_reserved_mb = accelerator_reserved / (1024 * 1024)
elif torch.xpu.is_available():
accelerator_allocated = torch.xpu.memory_allocated()
accelerator_reserved = torch.xpu.memory_reserved()
accelerator_allocated_mb = accelerator_allocated / (1024 * 1024)
accelerator_reserved_mb = accelerator_reserved / (1024 * 1024)
else:
accelerator_allocated_mb = 0.0
accelerator_reserved_mb = 0.0
return ram_usage_mb, accelerator_allocated_mb, accelerator_reserved_mb
def init_accelerator() -> tuple[float, float]:
"""Initialize accelerator and return initial memory usage."""
if torch.cuda.is_available():
torch.cuda.init()
torch.cuda.empty_cache()
_, accelerator_allocated, accelerator_reserved = get_memory_usage()
elif torch.xpu.is_available():
torch.xpu.init()
torch.xpu.empty_cache()
_, accelerator_allocated, accelerator_reserved = get_memory_usage()
else:
accelerator_allocated = 0.0
accelerator_reserved = 0.0
return accelerator_allocated, accelerator_reserved
def get_model_size_mb(model: torch.nn.Module, dtype_bytes: int = 4) -> float:
"""Calculate model size in MB."""
return sum(p.numel() * dtype_bytes for p in model.parameters()) / (1024 * 1024)
def get_peft_branch() -> str:
repo_root = os.path.dirname(__file__)
return subprocess.check_output("git rev-parse --abbrev-ref HEAD".split(), cwd=repo_root).decode().strip()
def log_results(
experiment_name: str,
benchmark_result: BenchmarkResult,
print_fn: Callable = print,
) -> None:
"""Log benchmark results to console."""
print_fn("\n" + "=" * 50)
print_fn(f"Benchmark Results: {experiment_name}")
print_fn("=" * 50)
print_fn(f"Status: {benchmark_result.run_info.get('status', 'N/A')}")
print_fn(f"Duration: {benchmark_result.run_info.get('duration', 0):.2f} seconds")
if benchmark_result.run_info.get("status") != BenchmarkStatus.SUCCESS.value:
print_fn(f"Error: {benchmark_result.run_info.get('error', 'Unknown error')}")
print_fn("=" * 50)
return
print_fn("\nModel Information:")
print_fn(f" Base Model: {benchmark_result.meta_info.get('model_id', 'N/A')}")
print_fn("\nParameter Counts:")
params = benchmark_result.meta_info.get("parameters", {})
print_fn(f" Base Parameters: {params.get('base_params', 0):,}")
print_fn(f" Trainable Parameters: {params.get('trainable_params', 0):,}")
print_fn(f" Parameter Ratio: {params.get('param_ratio', 0):.5%}")
print_fn("\nModel Size:")
size_info = benchmark_result.meta_info.get("model_size", {})
print_fn(f" Base Model: {size_info.get('base_model_size_mb', 0):.2f} MB")
print_fn(f" Adapter: {size_info.get('adapter_size_mb', 0):.2f} MB")
print_fn("\nMemory Usage (from generation_info):")
memory_data = benchmark_result.generation_info.get("memory", {})
print_fn(f" Peak Accelerator Memory: {memory_data.get('peak_accelerator_memory_mb', 0):.2f} MB")
print_fn(f" Peak RAM Memory: {memory_data.get('peak_ram_memory_mb', 0):.2f} MB")
print_fn("\nDetailed Metrics (from generation_info.by_category):")
if benchmark_result.generation_info.get("by_category"):
for category, cat_data in benchmark_result.generation_info["by_category"].items():
print_fn(f" Category: {category}")
metrics = cat_data.get("metrics", {})
print_fn(f" Inference Time: {metrics.get('inference_time', 0):.4f} seconds")
print_fn(f" Base Inference Time: {metrics.get('base_inference_time', 0):.4f} seconds")
print_fn(f" Inference Overhead: {metrics.get('inference_overhead_pct', 0):.2f}%")
print_fn(f" Time Per Token: {metrics.get('time_per_token', 0):.6f} seconds/token")
print_fn(f" Generated Tokens: {metrics.get('generated_tokens', 0):.1f}")
samples = cat_data.get("samples", [])
if samples:
print_fn(f" Number of Samples: {len(samples)}")
print_fn(
f" Average Generated Tokens: {sum(s.get('generated_tokens', 0) for s in samples) / len(samples):.1f}"
)
else:
print_fn(" No per-category metrics available.")
benchmark_result.compute_overall_metrics()
print_fn("\nOverall Metrics (from generation_info.overall):")
overall = benchmark_result.generation_info.get("overall")
if overall:
print_fn(f" Inference Time: {overall.get('inference_time', 0):.4f} seconds")
print_fn(f" Base Inference Time: {overall.get('base_inference_time', 0):.4f} seconds")
print_fn(f" Inference Overhead: {overall.get('inference_overhead_pct', 0):.2f}%")
print_fn(f" Time Per Token: {overall.get('time_per_token', 0):.6f} seconds/token")
print_fn(f" Generated Tokens: {overall.get('generated_tokens', 0):.1f}")
else:
print_fn(" No overall metrics computed.")
print_fn("\nSaved results to:", benchmark_result.save())
print_fn("=" * 50)
|