github-actions[bot]
🚀 Deploy method comparison app from GH action
8a5c1ae
# Copyright 2025-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Main entry point to run the experiments. Contains general setup and the proper inference code.
"""
import argparse
import gc
import json
import os
import sys
import time
from typing import Optional
import bitsandbytes
import torch
import transformers
from data import prepare_benchmark_prompts
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, set_seed
from utils import (
BenchmarkConfig,
BenchmarkResult,
BenchmarkStatus,
get_memory_usage,
init_accelerator,
log_results,
validate_experiment_path,
)
import peft
from peft import PeftConfig, get_peft_model
def load_base_results(model_id: str) -> Optional[dict]:
"""Load base model results if they exist."""
base_results_dir = os.path.join(os.path.dirname(__file__), "base_results")
model_name = model_id.replace("/", "_").replace("-", "_")
filename = f"base_{model_name}.json"
filepath = os.path.join(base_results_dir, filename)
if os.path.exists(filepath):
with open(filepath) as f:
return json.load(f)
return None
def measure_inference_time(model, tokenizer, prompts, max_new_tokens, num_runs, print_fn, category_generation_params):
"""Measure inference time for each prompt category."""
inference_times = {}
time_per_token = {}
generated_tokens = {}
individual_samples = {}
for category, category_prompts in prompts.items():
print_fn(f"\nMeasuring inference time for {category} prompts...")
category_times = []
category_tokens = []
category_time_per_token = []
category_samples = []
for prompt in category_prompts:
prompt_times = []
prompt_tokens = []
prompt_time_per_token = []
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
cat_max_new_tokens = category_generation_params.get(category, {}).get("max_new_tokens", max_new_tokens)
for _ in range(num_runs):
start_time = time.perf_counter()
outputs = model.generate(
**inputs,
max_new_tokens=cat_max_new_tokens,
min_new_tokens=cat_max_new_tokens,
pad_token_id=tokenizer.pad_token_id,
)
end_time = time.perf_counter()
# Calculate metrics
inference_time = end_time - start_time
num_tokens = len(outputs[0]) - len(inputs["input_ids"][0])
time_per_token_val = inference_time / num_tokens if num_tokens > 0 else 0
prompt_times.append(inference_time)
prompt_tokens.append(num_tokens)
prompt_time_per_token.append(time_per_token_val)
# Calculate averages for this prompt
avg_time = sum(prompt_times) / len(prompt_times)
avg_tokens = sum(prompt_tokens) / len(prompt_tokens)
avg_time_per_token = sum(prompt_time_per_token) / len(prompt_time_per_token)
sample_result = {
"inference_time": avg_time,
"generated_tokens": avg_tokens,
"time_per_token": avg_time_per_token,
"individual_runs": [
{"inference_time": t, "generated_tokens": tok, "time_per_token": tpt}
for t, tok, tpt in zip(prompt_times, prompt_tokens, prompt_time_per_token)
],
}
category_samples.append(sample_result)
category_times.append(avg_time)
category_tokens.append(avg_tokens)
category_time_per_token.append(avg_time_per_token)
if category_times:
avg_category_time = sum(category_times) / len(category_times)
avg_category_tokens = sum(category_tokens) / len(category_tokens)
avg_category_time_per_token = sum(category_time_per_token) / len(category_time_per_token)
inference_times[category] = avg_category_time
generated_tokens[category] = avg_category_tokens
time_per_token[category] = avg_category_time_per_token
individual_samples[category] = category_samples
return {
"inference_times": inference_times,
"time_per_token": time_per_token,
"generated_tokens": generated_tokens,
"individual_samples": individual_samples,
}
def run_benchmark(
benchmark_config: BenchmarkConfig, experiment_name: str, experiment_path: str, print_fn=print
) -> BenchmarkResult:
"""Run benchmarks for the specified PEFT method configuration."""
result = BenchmarkResult(
experiment_name=experiment_name,
status=BenchmarkStatus.RUNNING,
model_id=benchmark_config.model_id,
)
result.save()
start_time = time.perf_counter()
e_main_benchmark: Optional[Exception] = None
try:
print_fn("Initializing accelerator...")
accelerator_allocated_init, accelerator_reserved_init = init_accelerator()
set_seed(benchmark_config.seed)
print_fn(f"Loading base model: {benchmark_config.model_id}")
tokenizer = AutoTokenizer.from_pretrained(benchmark_config.model_id)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model_kwargs = {
"device_map": "auto" if (torch.cuda.is_available() or torch.xpu.is_available()) else None,
}
if benchmark_config.dtype == "float32":
model_kwargs["torch_dtype"] = torch.float32
elif benchmark_config.dtype == "float16":
model_kwargs["torch_dtype"] = torch.float16
elif benchmark_config.dtype == "bfloat16":
model_kwargs["torch_dtype"] = torch.bfloat16
else:
raise ValueError(f"Unsupported dtype: {benchmark_config.dtype}")
if benchmark_config.use_8bit:
model_kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True
)
elif benchmark_config.use_4bit:
model_kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=model_kwargs.get("torch_dtype", torch.float16),
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
base_model = AutoModelForCausalLM.from_pretrained(benchmark_config.model_id, **model_kwargs)
base_results = load_base_results(benchmark_config.model_id)
print_fn("Preparing benchmark prompts...")
prompts = prepare_benchmark_prompts(
config=benchmark_config,
tokenizer=tokenizer,
max_input_length=None,
seed=benchmark_config.seed,
)
if base_results:
print_fn("Using cached base model results...")
base_inference_times = base_results["inference_results"]
else:
raise FileNotFoundError(
"No cached base results found. Please run `python run_base.py` first to generate base model results."
)
try:
print_fn(f"Loading PEFT config from {experiment_path}")
peft_config = PeftConfig.from_pretrained(experiment_path)
print_fn(f"Loaded PEFT config: {peft_config.peft_type}, with parameters: {vars(peft_config)}")
model = get_peft_model(base_model, peft_config)
except Exception as exc:
error_msg = f"Error loading PEFT config: {str(exc)}"
print_fn(error_msg)
del base_model
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
elif torch.xpu.is_available():
torch.xpu.empty_cache()
ram, accelerator_allocated, accelerator_reserved = get_memory_usage()
result.add_memory_log("peft_model_loaded", ram, accelerator_allocated, accelerator_reserved)
# Calculate PEFT model metrics
trainable_params = model.get_nb_trainable_parameters()[0]
total_params = sum(p.numel() for p in model.parameters())
base_params = sum(p.numel() for p in model.base_model.parameters())
dtype_bytes = 2 if benchmark_config.dtype in ["float16", "bfloat16"] else 4
adapter_size_mb = trainable_params * dtype_bytes / (1024 * 1024)
base_model_size_mb = base_params * dtype_bytes / (1024 * 1024)
param_ratio = trainable_params / total_params if total_params > 0 else 0
result.update_meta_info(
param_counts={
"base_params": base_params,
"trainable_params": trainable_params,
"total_params": total_params,
"param_ratio": param_ratio,
},
size_info={"base_model_size_mb": base_model_size_mb, "adapter_size_mb": adapter_size_mb},
package_info={
"transformers-version": transformers.__version__,
"peft-version": peft.__version__,
"bitsandbytes-version": bitsandbytes.__version__ if hasattr(bitsandbytes, "__version__") else None,
},
)
print_fn("Measuring PEFT model inference times...")
peft_inference_times = measure_inference_time(
model,
tokenizer,
prompts,
max_new_tokens=benchmark_config.max_new_tokens,
num_runs=benchmark_config.num_inference_runs,
print_fn=print_fn,
category_generation_params=benchmark_config.category_generation_params,
)
# Calculate inference overhead for each category
inference_overhead = {
k: (peft_inference_times["inference_times"][k] - base_inference_times["inference_times"][k])
/ base_inference_times["inference_times"][k]
* 100
for k in base_inference_times["inference_times"]
}
for category in prompts:
category_metrics = {
"inference_time": peft_inference_times["inference_times"][category],
"base_inference_time": base_inference_times["inference_times"][category],
"inference_overhead_pct": inference_overhead[category],
"time_per_token": peft_inference_times["time_per_token"][category],
"generated_tokens": peft_inference_times["generated_tokens"][category],
}
result.add_metrics_for_category(
category, category_metrics, individual_samples=peft_inference_times["individual_samples"][category]
)
result.update_generation_info(
memory_data={
"peak_accelerator_memory_mb": max(
(log["accelerator_allocated_mb"] for log in result.generation_info["memory"]["memory_logs"]), default=0
),
"peak_ram_memory_mb": max(
(log["ram_mb"] for log in result.generation_info["memory"]["memory_logs"]), default=0
),
}
)
ram, accelerator_allocated, accelerator_reserved = get_memory_usage()
result.add_memory_log("benchmark_complete", ram, accelerator_allocated, accelerator_reserved)
result.status = BenchmarkStatus.SUCCESS
except Exception as exc:
print_fn(f"Benchmark failed with error: {exc}")
result.status = BenchmarkStatus.FAILED
e_main_benchmark = exc
end_time = time.perf_counter()
error_message = str(e_main_benchmark) if e_main_benchmark is not None else None
peft_config_dict = peft_config.to_dict() if "peft_config" in locals() else None
if peft_config_dict:
for key, value in peft_config_dict.items():
if isinstance(value, set):
peft_config_dict[key] = list(value)
result.update_run_info(
duration=end_time - start_time,
status=result.status,
error=error_message,
peft_config=peft_config_dict,
benchmark_config=benchmark_config.to_dict(),
)
return result
def main() -> None:
"""Main entry point for the benchmark runner."""
parser = argparse.ArgumentParser(description="Run PEFT method benchmarks")
parser.add_argument("experiment_path", help="Path to experiment directory")
parser.add_argument("--verbose", "-v", action="store_true", help="Enable verbose output")
args = parser.parse_args()
print_fn = print if args.verbose else lambda *args, **kwargs: None
experiment_path = args.experiment_path
allowed_root = os.path.abspath(os.path.join(os.path.dirname(__file__)))
abs_experiment_path = os.path.abspath(experiment_path)
if not abs_experiment_path.startswith(allowed_root):
print(f"Experiment path must be inside {allowed_root}, got: {abs_experiment_path}. Skipping execution.")
return 0
if not os.path.exists(abs_experiment_path):
print(f"Experiment path not found: {abs_experiment_path}. Skipping execution.")
return 0
experiment_path = abs_experiment_path
experiment_name, benchmark_config = validate_experiment_path(experiment_path)
print_fn(f"Running benchmark for experiment: {experiment_name}")
result = run_benchmark(
benchmark_config=benchmark_config,
experiment_name=experiment_name,
experiment_path=experiment_path,
print_fn=print_fn,
)
log_results(experiment_name, result, print_fn=print)
if __name__ == "__main__":
sys.exit(main())