File size: 16,741 Bytes
c2986fa
 
cacf5e4
c2986fa
cacf5e4
c2986fa
 
 
 
e2b9c18
 
 
 
 
 
 
 
 
 
 
 
 
 
c2986fa
e2b9c18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2986fa
 
 
 
 
 
e2b9c18
 
 
 
 
 
 
 
 
 
 
c2986fa
e2b9c18
c2986fa
 
 
 
 
e2b9c18
 
 
 
 
 
 
 
c2986fa
e2b9c18
 
c2986fa
e2b9c18
 
 
c2986fa
e2b9c18
 
 
 
 
 
 
 
 
 
 
 
 
c2986fa
e2b9c18
c2986fa
 
 
e2b9c18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2986fa
 
 
 
 
 
 
 
 
 
 
cacf5e4
e75ef56
c2986fa
 
 
 
 
 
 
5229201
c2986fa
 
 
 
 
 
 
 
 
 
 
 
 
5229201
c2986fa
 
 
 
 
 
 
 
e2b9c18
c2986fa
e2b9c18
 
 
 
 
 
 
 
 
c2986fa
e2b9c18
c2986fa
 
e2b9c18
c2986fa
 
 
3f17249
c2986fa
5229201
c759ce1
 
5229201
3f17249
 
c2986fa
 
 
 
 
 
 
 
 
 
 
e2b9c18
c2986fa
 
 
e2b9c18
c2986fa
 
 
e2b9c18
 
 
 
c2986fa
 
e2b9c18
c2986fa
366ea29
c2986fa
 
 
 
e2b9c18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import os, uuid, csv, random
from datetime import datetime
from PIL import Image
import gradio as gr

# —— 1. 环境 & 文件准备 —— 
os.environ["GRADIO_SSR_MODE"] = "False"    # 关掉 SSR

# 确保 data 目录及子目录存在
os.makedirs("data/images/task0/orig_imgs", exist_ok=True)
os.makedirs("data/images/task0/processed_imgs", exist_ok=True)
os.makedirs("data/images/task1/orig_imgs", exist_ok=True)
os.makedirs("data/images/task1/processed_imgs", exist_ok=True)
os.makedirs("data/images/task2/orig_imgs", exist_ok=True)
os.makedirs("data/images/task2/processed_imgs", exist_ok=True)
os.makedirs("data/images/task3/orig_imgs", exist_ok=True)
os.makedirs("data/images/task3/processed_imgs", exist_ok=True)
os.makedirs("data/images/task4/orig_imgs", exist_ok=True)
os.makedirs("data/images/task4/processed_imgs", exist_ok=True)
os.makedirs("data/images/task5/orig_imgs", exist_ok=True)
os.makedirs("data/images/task5/processed_imgs", exist_ok=True)
os.makedirs("data/images/task6/orig_imgs", exist_ok=True)
os.makedirs("data/images/task6/processed_imgs", exist_ok=True)

# 在文件开头添加必要的目录创建
os.makedirs("data/evaluations", exist_ok=True)
os.makedirs("data/metadatas", exist_ok=True)

meta0 = "data/metadatas/meta0.csv"
meta1 = "data/metadatas/meta1.csv"
meta2 = "data/metadatas/meta2.csv"
meta3 = "data/metadatas/meta3.csv"
meta4 = "data/metadatas/meta4.csv"
meta5 = "data/metadatas/meta5.csv"
meta6 = "data/metadatas/meta6.csv"

if not os.path.exists(meta0):
    with open(meta0, "w", newline="", encoding="utf-8") as f:
        writer = csv.DictWriter(f, fieldnames=[
            "id","original_path","prompt",
            "agent1","img1_path","agent2","img2_path"
        ])
        writer.writeheader()
        
if not os.path.exists(meta1):
    with open(meta1, "w", newline="", encoding="utf-8") as f:
        writer = csv.DictWriter(f, fieldnames=[
            "id","original_path","prompt",
            "agent1","img1_path","agent2","img2_path"
        ])
        writer.writeheader()

if not os.path.exists(meta2):
    with open(meta2, "w", newline="", encoding="utf-8") as f:
        writer = csv.DictWriter(f, fieldnames=[
            "id","original_path","prompt",
            "agent1","img1_path","agent2","img2_path"
        ])
        writer.writeheader()

if not os.path.exists(meta3):
    with open(meta3, "w", newline="", encoding="utf-8") as f:
        writer = csv.DictWriter(f, fieldnames=[
            "id","original_path","prompt",
            "agent1","img1_path","agent2","img2_path"
        ])
        writer.writeheader()

if not os.path.exists(meta4):
    with open(meta4, "w", newline="", encoding="utf-8") as f:
        writer = csv.DictWriter(f, fieldnames=[
            "id","original_path","prompt",
            "agent1","img1_path","agent2","img2_path"
        ])
        writer.writeheader()

if not os.path.exists(meta5):
    with open(meta5, "w", newline="", encoding="utf-8") as f:
        writer = csv.DictWriter(f, fieldnames=[
            "id","original_path","prompt",
            "agent1","img1_path","agent2","img2_path"
        ])
        writer.writeheader()

if not os.path.exists(meta6):
    with open(meta6, "w", newline="", encoding="utf-8") as f:
        writer = csv.DictWriter(f, fieldnames=[
            "id","original_path","prompt",
            "agent1","img1_path","agent2","img2_path"
        ])
        writer.writeheader()

eval0 = "data/evaluations/eval0.csv"
eval1 = "data/evaluations/eval1.csv"
eval2 = "data/evaluations/eval2.csv"
eval3 = "data/evaluations/eval3.csv"
eval4 = "data/evaluations/eval4.csv"
eval5 = "data/evaluations/eval5.csv"
eval6 = "data/evaluations/eval6.csv"


if not os.path.exists(eval0):
    with open(eval0, "w", newline="", encoding="utf-8") as f:
        writer = csv.DictWriter(f, fieldnames=[
            "timestamp", "record_id",
            "a1_follow","a1_creativity","a1_finesse",
            "a2_follow","a2_creativity","a2_finesse"
        ])
        writer.writeheader()

if not os.path.exists(eval1):
    with open(eval1, "w", newline="", encoding="utf-8") as f:
        writer = csv.DictWriter(f, fieldnames=[
            "timestamp", "record_id",
            "a1_follow","a1_creativity","a1_finesse",
            "a2_follow","a2_creativity","a2_finesse"
        ])
        writer.writeheader()

if not os.path.exists(eval2):
    with open(eval2, "w", newline="", encoding="utf-8") as f:
        writer = csv.DictWriter(f, fieldnames=[
            "timestamp", "record_id",
            "a1_follow","a1_creativity","a1_finesse",
            "a2_follow","a2_creativity","a2_finesse"
        ])
        writer.writeheader()

if not os.path.exists(eval3):
    with open(eval3, "w", newline="", encoding="utf-8") as f:
        writer = csv.DictWriter(f, fieldnames=[
            "timestamp", "record_id",
            "a1_follow","a1_creativity","a1_finesse",
            "a2_follow","a2_creativity","a2_finesse"
        ])
        writer.writeheader()

if not os.path.exists(eval4):
    with open(eval4, "w", newline="", encoding="utf-8") as f:
        writer = csv.DictWriter(f, fieldnames=[
            "timestamp", "record_id",
            "a1_follow","a1_creativity","a1_finesse",
            "a2_follow","a2_creativity","a2_finesse"
        ])
        writer.writeheader()

if not os.path.exists(eval5):
    with open(eval5, "w", newline="", encoding="utf-8") as f:
        writer = csv.DictWriter(f, fieldnames=[
            "timestamp", "record_id",
            "a1_follow","a1_creativity","a1_finesse",
            "a2_follow","a2_creativity","a2_finesse"
        ])
        writer.writeheader()

if not os.path.exists(eval6):
    with open(eval6, "w", newline="", encoding="utf-8") as f:
        writer = csv.DictWriter(f, fieldnames=[
            "timestamp", "record_id",
            "a1_follow","a1_creativity","a1_finesse",
            "a2_follow","a2_creativity","a2_finesse"
        ])
        writer.writeheader()
        
        
def run_agent_on_image(original_img: Image.Image, prompt: str, agent_name: str) -> Image.Image:
    if original_img is None:
        raise ValueError("Input image cannot be None")
    if not prompt or prompt.strip() == "":
        raise ValueError("Prompt cannot be empty")
    return original_img # TODO: implement actual agent processing

def save_to_library(task_id, orig_img, prompt, a1, a2, img1, img2):
    try:
        if any(img is None for img in [orig_img, img1, img2]):
            raise ValueError("All images must be valid")
        if not prompt or prompt.strip() == "":
            raise ValueError("Prompt cannot be empty")
            
        orig_id = uuid.uuid4().hex
        
        orig_path = f"data/images/task{task_id}/orig_imgs/{orig_id}.png"
        img1_path = f"data/images/task{task_id}/processed_imgs/{orig_id}_a1.png"
        img2_path = f"data/images/task{task_id}/processed_imgs/{orig_id}_a2.png"
        
        # 使用 try-except 处理图片保存
        try:
            orig_img.save(orig_path)
            img1.save(img1_path)
            img2.save(img2_path)
        except Exception as e:
            raise IOError(f"Failed to save images: {str(e)}")
        
        # 使用 try-except 处理 CSV 写入
        try:
            with open(f"data/metadatas/meta{task_id}.csv", "a", newline="", encoding="utf-8") as f:
                writer = csv.DictWriter(f, fieldnames=[
                    "id","original_path", "prompt",
                    "agent1","img1_path","agent2","img2_path"
                ])
                writer.writerow({
                    "id": orig_id,
                    "original_path": orig_path,
                    "prompt": prompt,
                    "agent1": a1,
                    "img1_path": img1_path,
                    "agent2": a2,
                    "img2_path": img2_path
                })
        except Exception as e:
            # 如果写入CSV失败,清理已保存的图片
            for path in [orig_path, img1_path, img2_path]:
                if os.path.exists(path):
                    os.remove(path)
            raise IOError(f"Failed to write metadata: {str(e)}")
            
    except Exception as e:
        raise Exception(f"Error in save_to_library: {str(e)}")

def generate_and_store(task_id, orig_img, prompt, a1, a2):
    try:
        if orig_img is None:
            return None, None
        if not prompt or prompt.strip() == "":
            return None, None
        if a1 == a2:
            return None, None  # 不允许选择相同的Agent
            
        out1 = run_agent_on_image(orig_img, prompt, a1)
        out2 = run_agent_on_image(orig_img, prompt, a2)
        save_to_library(task_id, orig_img, prompt, a1, a2, out1, out2)
        return out1, out2
    except Exception as e:
        print(f"Error in generate_and_store: {str(e)}")
        return None, None


def load_random_record(task_id):
    try:
        # 检查文件是否存在
        meta_file = f"data/metadatas/meta{task_id}.csv"
        if not os.path.exists(meta_file):
            return "", None, "Metadata file not found", None, None
            
        # 读取所有记录
        with open(meta_file, "r", encoding="utf-8") as f:
            all_records = list(csv.DictReader(f))
        
        if not all_records:
            return "", None, "No records in library", None, None
        
        # 读取最近5分钟内的评测记录
        recent_evaluated_ids = set()
        current_time = datetime.now()
        
        eval_file = f"data/evaluations/eval{task_id}.csv"
        if os.path.exists(eval_file):
            try:
                with open(eval_file, "r", encoding="utf-8") as f:
                    eval_records = list(csv.DictReader(f))
                    
                for record in eval_records:
                    try:
                        eval_time = datetime.fromisoformat(record["timestamp"])
                        time_diff = (current_time - eval_time).total_seconds() / 60  
                        
                        if time_diff <= 5: 
                            recent_evaluated_ids.add(record["record_id"])
                    except ValueError:
                        # 跳过无效的时间戳
                        continue
            except Exception as e:
                print(f"Error reading evaluation file: {str(e)}")
        
        available_records = [r for r in all_records if r["id"] not in recent_evaluated_ids]
        
        if not available_records:
            return "", None, "All available records have been recently evaluated", None, None

        rec = random.choice(available_records)
        
        # 验证图片文件是否存在
        for path in [rec["original_path"], rec["img1_path"], rec["img2_path"]]:
            if not os.path.exists(path):
                return "", None, f"Image file not found: {path}", None, None
                
        return (
            rec["id"],
            rec["original_path"],
            rec["prompt"],
            rec["img1_path"],
            rec["img2_path"]
        )
    except Exception as e:
        return "", None, f"Error loading record: {str(e)}", None, None


def save_evaluation(task_id, record_id,
                    a1_follow, a1_creativity, a1_finesse,
                    a2_follow, a2_creativity, a2_finesse):
    try:
        # 验证输入
        if not record_id:
            return "❌ Invalid record ID", *load_random_record(task_id)
            
        # 验证评分
        scores = [a1_follow, a1_creativity, a1_finesse,
                 a2_follow, a2_creativity, a2_finesse]
        if any(score is None for score in scores):
            return "❌ Please complete all evaluations", *load_random_record(task_id)
            
        with open(f"data/evaluations/eval{task_id}.csv", "a", newline="", encoding="utf-8") as f:
            writer = csv.DictWriter(f, fieldnames=[
                "timestamp", "record_id",
                "a1_follow","a1_creativity","a1_finesse",
                "a2_follow","a2_creativity","a2_finesse"
            ])
            writer.writerow({
                "timestamp": datetime.now().isoformat(),
                "record_id": record_id,
                "a1_follow": a1_follow,
                "a1_creativity": a1_creativity,
                "a1_finesse": a1_finesse,
                "a2_follow": a2_follow,
                "a2_creativity": a2_creativity,
                "a2_finesse": a2_finesse
            })
        
        return "✅ Evaluation submitted!", *load_random_record(task_id)
    except Exception as e:
        return f"❌ Error saving evaluation: {str(e)}", *load_random_record(task_id)


MODEL_CHOICES = ["Model A", "Model B", "Model C"]
TASK_CHOICES = [
    "Image Restoration",
    "Image Enhancement",
    "Domain & Style Transfer",
    "Semantic-Aware Editing",
    "Image Composition & Expansion",
    "Face & Appeal Editing",
    "Steganography & Security Handling"
]

with gr.Blocks() as demo:

    with gr.Tabs():

        # ——— Tab 1: Agent Arena ———
        with gr.TabItem("Agent Arena"):
            gr.Markdown("## CV Agent Arena  🎨🤖")
            with gr.Row():
                with gr.Column():
                    task_dropdown = gr.Dropdown(choices=TASK_CHOICES, label="Task Category", type="index")
                    original = gr.Image(type="pil", label="Upload Original Image")
                    prompt   = gr.Textbox(lines=2, label="Prompt",
                                         placeholder="e.g. Make it look like a sunny day")
                with gr.Column():
                    agent1 = gr.Dropdown(choices=MODEL_CHOICES, label="Select Agent 1")
                    agent2 = gr.Dropdown(choices=MODEL_CHOICES, label="Select Agent 2")
            run_btn = gr.Button("Run Agents")
            with gr.Row():
                out1 = gr.Image(type="pil", label="Agent 1 Output")
                out2 = gr.Image(type="pil", label="Agent 2 Output")

            run_btn.click(
                fn=generate_and_store,
                inputs=[task_dropdown, original, prompt, agent1, agent2],
                outputs=[out1, out2],
                show_api=False
            )


        # ——— Tab 2: Human as Judge ———
        with gr.TabItem("Human as Judge"):
            record_id_state = gr.State("")
            task_dropdown = gr.Dropdown(choices=TASK_CHOICES, label="Task Category", type="index")

            # 原图与 Prompt 并排
            with gr.Row():
                judge_orig   = gr.Image(label="Original Image")
                judge_prompt = gr.Textbox(label="Prompt", interactive=False)

            # 两张结果图并排
            with gr.Row():
                judge_out1   = gr.Image(label="Agent 1 Result")
                judge_out2   = gr.Image(label="Agent 2 Result")

            # 当选 Task 时加载随机样本
            task_dropdown.change(
                fn=load_random_record,
                inputs=[task_dropdown],
                outputs=[record_id_state, judge_orig, judge_prompt, judge_out1, judge_out2],
                show_api=False
            )
            
            with gr.Row():
                gr.Markdown(
                    "## Please Evaluate the Processed Images from 3 Aspects",
                    elem_classes=["center-text"]
                )

            with gr.Row():
                with gr.Column():
                    a1_follow     = gr.Radio([0,1,2,3,4,5], label="Follow Prompt")
                    a1_creativity = gr.Radio([0,1,2,3,4,5], label="Creativity")
                    a1_finesse    = gr.Radio([0,1,2,3,4,5], label="Finesse/Detail")
                with gr.Column():
                    a2_follow     = gr.Radio([0,1,2,3,4,5], label="Follow Prompt")
                    a2_creativity = gr.Radio([0,1,2,3,4,5], label="Creativity")
                    a2_finesse    = gr.Radio([0,1,2,3,4,5], label="Finesse/Detail")

            submit_btn    = gr.Button("Submit Evaluation")
            submit_status = gr.Textbox(label="Status", interactive=False)
            
            submit_btn.click(
                fn=save_evaluation,
                inputs=[
                    task_dropdown, record_id_state,
                    a1_follow, a1_creativity, a1_finesse,
                    a2_follow, a2_creativity, a2_finesse
                ],
                outputs=[
                    submit_status,
                    record_id_state, judge_orig, judge_prompt, judge_out1, judge_out2
                ],
                show_api=False
            )
            

    demo.queue()
    demo.launch(
        share=False,
        show_api=False,
        ssr_mode=False
    )