Spaces:
Running
Running
# import gradio as gr | |
# from huggingface_hub import InferenceClient | |
# """ | |
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
# """ | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# def respond( | |
# message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
# ): | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
# """ | |
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
# """ | |
# demo = gr.ChatInterface( | |
# respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |
import gradio as gr | |
from PIL import Image | |
# —— 在这里根据你自己的 Agent 框架实现这个函数 —— | |
def run_agent_on_image(original_img: Image.Image, prompt: str, agent_name: str) -> Image.Image: | |
""" | |
调用指定 agent(模型/工具)处理图片并返回结果 | |
original_img: PIL Image | |
prompt: 用户输入的描述 | |
agent_name: 在下拉框里选的模型名称 | |
""" | |
# 示例逻辑(请替换为真正的 agent 调用) | |
# if agent_name == "Model A": | |
# return model_a.process(original_img, prompt) | |
# elif agent_name == "Model B": | |
# return model_b.process(original_img, prompt) | |
return original_img # TODO: 删除这行 | |
# 可选:把可用的 agent 列表写成一个文件或者直接在这里列出 | |
MODEL_CHOICES = ["Model A", "Model B", "Model C"] | |
with gr.Blocks() as demo: | |
gr.Markdown("## CV Agent Arena 🎨🤖\n上传一张图片,输入处理指令,然后选两个不同的 agent 比较结果。") | |
with gr.Row(): | |
# 左侧:原图 + prompt | |
with gr.Column(): | |
original = gr.Image(type="pil", label="Upload Original Image") | |
prompt = gr.Textbox(lines=2, placeholder="e.g. ‘Make it look like a sunny day’", label="Prompt") | |
# 右侧:选择两个 agent | |
with gr.Column(): | |
agent1 = gr.Dropdown(choices=MODEL_CHOICES, label="Select Agent 1") | |
agent2 = gr.Dropdown(choices=MODEL_CHOICES, label="Select Agent 2") | |
# 处理按钮 | |
run_btn = gr.Button("Run Agents") | |
with gr.Row(): | |
# 左侧输出:Agent1 结果 | |
with gr.Column(): | |
out1 = gr.Image(type="pil", label="Agent 1 Output") | |
# 右侧输出:Agent2 结果 | |
with gr.Column(): | |
out2 = gr.Image(type="pil", label="Agent 2 Output") | |
# 按钮绑定 | |
run_btn.click( | |
fn=lambda img, p, a1, a2: (run_agent_on_image(img, p, a1), run_agent_on_image(img, p, a2)), | |
inputs=[original, prompt, agent1, agent2], | |
outputs=[out1, out2], | |
) | |
if __name__ == "__main__": | |
demo.queue() # 支持异步队列,提高并发 | |
demo.launch() | |