Spaces:
Running
Running
File size: 9,398 Bytes
7e14e6f fa80eae 7e14e6f 7e40c67 f6e9269 4673e91 d7392b8 55c5135 261f952 7e14e6f d851af8 7e14e6f d851af8 45f1473 7710faa 261f952 45f1473 261f952 45f1473 261f952 45f1473 4673e91 7e14e6f 45f1473 7e14e6f c289d70 7e14e6f 45f1473 c58ea62 45f1473 7e14e6f 2d683e0 45f1473 7e14e6f 2d683e0 7e14e6f 2d683e0 7e14e6f 4673e91 7e14e6f 45f1473 7e14e6f 45f1473 d7392b8 45f1473 c58ea62 261f952 d7392b8 7e14e6f 4673e91 7e14e6f 4673e91 7e14e6f 261f952 45f1473 261f952 45f1473 261f952 45f1473 261f952 45f1473 261f952 7e14e6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import streamlit as st
import pandas as pd
import time
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import matplotlib.pyplot as plt
from pymystem3 import Mystem
import io
from rapidfuzz import fuzz
from tqdm.auto import tqdm
import torch
from openpyxl import load_workbook
from openpyxl import Workbook
from openpyxl.utils.dataframe import dataframe_to_rows
from sentiment_decorators import sentiment_analysis_decorator
from langchain.llms import HuggingFacePipeline
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
# Initialize pymystem3 for lemmatization
mystem = Mystem()
# Set up the sentiment analyzers
finbert = pipeline("sentiment-analysis", model="ProsusAI/finbert")
roberta = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
finbert_tone = pipeline("sentiment-analysis", model="yiyanghkust/finbert-tone")
rubert1 = pipeline("sentiment-analysis", model="DeepPavlov/rubert-base-cased")
rubert2 = pipeline("sentiment-analysis", model="blanchefort/rubert-base-cased-sentiment")
# Translation model for Russian to English
model_name = "Helsinki-NLP/opus-mt-ru-en"
translation_tokenizer = AutoTokenizer.from_pretrained(model_name)
translation_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ru-en")
def init_langchain_llm():
pipe = pipeline("text-generation", model="nvidia/Llama-3.1-Nemotron-70B-Instruct-HF")
llm = HuggingFacePipeline(pipeline=pipe)
return llm
def estimate_impact(llm, news_text):
template = """
Analyze the following news piece and estimate its monetary impact in Russian rubles for the next 6 months.
If a monetary estimate is not possible, categorize the impact as "Значительный", "Незначительный", or "Неопределенный".
Also provide a short reasoning (max 100 words) for your assessment.
News: {news}
Estimated Impact:
Reasoning:
"""
prompt = PromptTemplate(template=template, input_variables=["news"])
chain = LLMChain(llm=llm, prompt=prompt)
response = chain.run(news=news_text)
impact, reasoning = response.split("Reasoning:")
impact = impact.strip()
reasoning = reasoning.strip()
return impact, reasoning
def process_file_with_llm(df, llm):
df['LLM_Impact'] = ''
df['LLM_Reasoning'] = ''
for index, row in df.iterrows():
if any(row[model] in ['Negative', 'Positive'] for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']):
impact, reasoning = estimate_impact(llm, row['Translated']) # Use translated text
df.at[index, 'LLM_Impact'] = impact
df.at[index, 'LLM_Reasoning'] = reasoning
return df
def create_output_file_with_llm(df, uploaded_file, analysis_df):
wb = load_workbook("sample_file.xlsx")
# Update 'Сводка' sheet
summary_df = pd.DataFrame({
'Объект': df['Объект'].unique(),
'Всего новостей': df.groupby('Объект').size(),
'Отрицательные': df[df[['FinBERT', 'RoBERTa', 'FinBERT-Tone']].eq('Negative').any(axis=1)].groupby('Объект').size(),
'Положительные': df[df[['FinBERT', 'RoBERTa', 'FinBERT-Tone']].eq('Positive').any(axis=1)].groupby('Объект').size(),
'Impact': df.groupby('Объект')['LLM_Impact'].agg(lambda x: x.value_counts().index[0] if x.any() else 'Неопределенный')
})
ws = wb['Сводка']
for r_idx, row in enumerate(dataframe_to_rows(summary_df, index=False, header=False), start=4):
for c_idx, value in enumerate(row, start=5):
ws.cell(row=r_idx, column=c_idx, value=value)
# Update 'Значимые' sheet
significant_data = []
for _, row in df.iterrows():
if any(row[model] in ['Negative', 'Positive'] for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']):
sentiment = 'Negative' if any(row[model] == 'Negative' for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']) else 'Positive'
significant_data.append([row['Объект'], 'релевантен', sentiment, row['LLM_Impact'], row['Заголовок'], row['Выдержки из текста']])
ws = wb['Значимые']
for r_idx, row in enumerate(significant_data, start=3):
for c_idx, value in enumerate(row, start=3):
ws.cell(row=r_idx, column=c_idx, value=value)
# Update 'Анализ' sheet
analysis_df['LLM_Reasoning'] = df['LLM_Reasoning']
ws = wb['Анализ']
for r_idx, row in enumerate(dataframe_to_rows(analysis_df, index=False, header=False), start=4):
for c_idx, value in enumerate(row, start=5):
ws.cell(row=r_idx, column=c_idx, value=value)
# Copy 'Публикации' sheet from original uploaded file
original_df = pd.read_excel(uploaded_file, sheet_name='Публикации')
ws = wb['Публикации']
for r_idx, row in enumerate(dataframe_to_rows(original_df, index=False, header=True), start=1):
for c_idx, value in enumerate(row, start=1):
ws.cell(row=r_idx, column=c_idx, value=value)
# Add 'Тех.приложение' sheet with processed data
if 'Тех.приложение' not in wb.sheetnames:
wb.create_sheet('Тех.приложение')
ws = wb['Тех.приложение']
for r_idx, row in enumerate(dataframe_to_rows(df, index=False, header=True), start=1):
for c_idx, value in enumerate(row, start=1):
ws.cell(row=r_idx, column=c_idx, value=value)
output = io.BytesIO()
wb.save(output)
output.seek(0)
return output
# ... (keep other functions as they are)
def main():
st.title("... приступим к анализу... версия 45")
# Initialize session state
if 'processed_df' not in st.session_state:
st.session_state.processed_df = None
if 'analysis_df' not in st.session_state:
st.session_state.analysis_df = None
if 'llm_analyzed' not in st.session_state:
st.session_state.llm_analyzed = False
uploaded_file = st.file_uploader("Выбирайте Excel-файл", type="xlsx")
if uploaded_file is not None and st.session_state.processed_df is None:
start_time = time.time()
st.session_state.processed_df = process_file(uploaded_file)
st.session_state.analysis_df = create_analysis_data(st.session_state.processed_df)
st.subheader("Предпросмотр данных")
st.write(st.session_state.processed_df.head())
st.subheader("Распределение окраски")
fig, axs = plt.subplots(2, 2, figsize=(12, 8))
fig.suptitle("Распределение окраски по моделям")
models = ['ruBERT2','FinBERT', 'RoBERTa', 'FinBERT-Tone']
for i, model in enumerate(models):
ax = axs[i // 2, i % 2]
sentiment_counts = st.session_state.processed_df[model].value_counts()
sentiment_counts.plot(kind='bar', ax=ax)
ax.set_title(f"{model} Sentiment")
ax.set_xlabel("Sentiment")
ax.set_ylabel("Count")
plt.tight_layout()
st.pyplot(fig)
st.subheader("Анализ")
st.dataframe(st.session_state.analysis_df)
output = create_output_file(st.session_state.processed_df, uploaded_file, st.session_state.analysis_df)
end_time = time.time()
elapsed_time = end_time - start_time
formatted_time = format_elapsed_time(elapsed_time)
st.success(f"Обработка завершена за {formatted_time}.")
st.download_button(
label="Скачать результат анализа новостей",
data=output,
file_name="результат_анализа_новостей.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
if st.session_state.processed_df is not None and not st.session_state.llm_analyzed:
if st.button("Что скажет нейросеть?"):
st.info("Анализ нейросетью начался. Это может занять некоторое время...")
llm = init_langchain_llm()
df_with_llm = process_file_with_llm(st.session_state.processed_df, llm)
output_with_llm = create_output_file_with_llm(df_with_llm, uploaded_file, st.session_state.analysis_df)
st.success("Анализ нейросетью завершен!")
st.session_state.llm_analyzed = True
st.session_state.output_with_llm = output_with_llm
if st.session_state.llm_analyzed:
st.download_button(
label="Скачать результат анализа с оценкой нейросети",
data=st.session_state.output_with_llm,
file_name="результат_анализа_с_нейросетью.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
if __name__ == "__main__":
main() |