processor / app.py
pentarosarium's picture
progress more 32+
87fd9e7
raw
history blame
10.7 kB
import streamlit as st
import pandas as pd
import time
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import matplotlib.pyplot as plt
from pymystem3 import Mystem
import io
from rapidfuzz import fuzz
from tqdm.auto import tqdm
import time
import torch
from openpyxl import load_workbook
# Initialize pymystem3 for lemmatization
mystem = Mystem()
# Set up the sentiment analyzers
finbert = pipeline("sentiment-analysis", model="ProsusAI/finbert")
roberta = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
finbert_tone = pipeline("sentiment-analysis", model="yiyanghkust/finbert-tone")
rubert1 = pipeline("sentiment-analysis", model = "DeepPavlov/rubert-base-cased")
rubert2 = pipeline("sentiment-analysis", model = "blanchefort/rubert-base-cased-sentiment")
# Function for lemmatizing Russian text
def lemmatize_text(text):
words = text.split()
lemmatized_words = []
for word in tqdm(words, desc="Lemmatizing", unit="word"):
lemmatized_word = ''.join(mystem.lemmatize(word))
lemmatized_words.append(lemmatized_word)
return ' '.join(lemmatized_words)
# Translation model for Russian to English
model_name = "Helsinki-NLP/opus-mt-ru-en"
translation_tokenizer = AutoTokenizer.from_pretrained(model_name)
translation_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ru-en")
def translate(text):
# Tokenize the input text
inputs = translation_tokenizer(text, return_tensors="pt", truncation=True)
# Calculate max_length based on input length (you may need to adjust this ratio)
input_length = inputs.input_ids.shape[1]
max_length = min(512, int(input_length * 1.5))
# Generate translation
translated_tokens = translation_model.generate(
**inputs,
max_length=max_length,
num_beams=5,
no_repeat_ngram_size=2,
early_stopping=True
)
# Decode the translated tokens
translated_text = translation_tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
return translated_text
# Functions for FinBERT, RoBERTa, and FinBERT-Tone with label mapping
def get_mapped_sentiment(result):
label = result['label'].lower()
if label in ["positive", "label_2", "pos", "pos_label"]:
return "Positive"
elif label in ["negative", "label_0", "neg", "neg_label"]:
return "Negative"
return "Neutral"
def get_rubert1_sentiment(text):
result = rubert1(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
def get_rubert2_sentiment(text):
result = rubert2(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
def get_finbert_sentiment(text):
result = finbert(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
def get_roberta_sentiment(text):
result = roberta(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
def get_finbert_tone_sentiment(text):
result = finbert_tone(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
#Fuzzy filter out similar news for the same NER
def fuzzy_deduplicate(df, column, threshold=65):
seen_texts = []
indices_to_keep = []
for i, text in enumerate(df[column]):
if pd.isna(text):
indices_to_keep.append(i)
continue
text = str(text)
if not seen_texts or all(fuzz.ratio(text, seen) < threshold for seen in seen_texts):
seen_texts.append(text)
indices_to_keep.append(i)
return df.iloc[indices_to_keep]
def process_file(uploaded_file):
df = pd.read_excel(uploaded_file, sheet_name='Публикации')
original_news_count = len(df)
# Apply fuzzy deduplication
df = df.groupby('Объект').apply(
lambda x: fuzzy_deduplicate(x, 'Выдержки из текста', 65)
).reset_index(drop=True)
remaining_news_count = len(df)
duplicates_removed = original_news_count - remaining_news_count
st.write(f"Из {original_news_count} новостных сообщений удалены {duplicates_removed} дублирующих. Осталось {remaining_news_count}.")
# Translate texts
translated_texts = []
lemmatized_texts = []
progress_bar = st.progress(0)
progress_text = st.empty()
total_news = len(df)
texts = df['Выдержки из текста'].tolist()
for text in df['Выдержки из текста']:
lemmatized_texts.append(lemmatize_text(text))
for i, text in enumerate(lemmatized_texts):
translated_text = translate(str(text))
translated_texts.append(translated_text)
progress_bar.progress((i + 1) / len(df))
progress_text.text(f"{i + 1} из {total_news} сообщений предобработано")
# Perform sentiment analysis
#rubert1_results = [get_rubert1_sentiment(text) for text in texts]
rubert2_results = [get_rubert2_sentiment(text) for text in texts]
finbert_results = [get_finbert_sentiment(text) for text in translated_texts]
roberta_results = [get_roberta_sentiment(text) for text in translated_texts]
finbert_tone_results = [get_finbert_tone_sentiment(text) for text in translated_texts]
# Add results to DataFrame
#df['ruBERT1'] = rubert1_results
df['ruBERT2'] = rubert2_results
df['FinBERT'] = finbert_results
df['RoBERTa'] = roberta_results
df['FinBERT-Tone'] = finbert_tone_results
df['Translated'] = translated_texts
# Reorder columns
columns_order = ['Объект', 'ruBERT2','FinBERT', 'RoBERTa', 'FinBERT-Tone', 'Выдержки из текста', 'Translated' ]
df = df[columns_order]
return df
def create_output_file(df):
# Load the sample file to copy its structure
sample_wb = load_workbook("sample_file.xlsx")
# Create a new Excel writer object
output = io.BytesIO()
with pd.ExcelWriter(output, engine='openpyxl') as writer:
writer.book = sample_wb
writer.sheets = {ws.title: ws for ws in sample_wb.worksheets}
# Process data for 'Сводка' sheet
entities = df['Объект'].unique()
summary_data = []
for entity in entities:
entity_df = df[df['Объект'] == entity]
total_news = len(entity_df)
negative_news = sum((entity_df['FinBERT'] == 'Negative') |
(entity_df['RoBERTa'] == 'Negative') |
(entity_df['FinBERT-Tone'] == 'Negative'))
positive_news = sum((entity_df['FinBERT'] == 'Positive') |
(entity_df['RoBERTa'] == 'Positive') |
(entity_df['FinBERT-Tone'] == 'Positive'))
summary_data.append([entity, total_news, negative_news, positive_news])
summary_df = pd.DataFrame(summary_data, columns=['Объект', 'Всего новостей', 'Отрицательные', 'Положительные'])
summary_df = summary_df.sort_values('Отрицательные', ascending=False)
# Write 'Сводка' sheet
summary_df.to_excel(writer, sheet_name='Сводка', startrow=3, startcol=4, index=False, header=False)
# Process data for 'Значимые' and 'Анализ' sheets
significant_data = []
analysis_data = []
for _, row in df.iterrows():
if any(row[model] in ['Negative', 'Positive'] for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']):
sentiment = 'Negative' if any(row[model] == 'Negative' for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']) else 'Positive'
significant_data.append([row['Объект'], sentiment, row['Заголовок'], row['Выдержки из текста']])
if any(row[model] == 'Negative' for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']):
analysis_data.append([row['Объект'], 'РИСК УБЫТКА', row['Заголовок'], row['Выдержки из текста']])
# Write 'Значимые' sheet
significant_df = pd.DataFrame(significant_data, columns=['Объект', 'Окраска', 'Заголовок', 'Текст'])
significant_df.to_excel(writer, sheet_name='Значимые', startrow=2, startcol=2, index=False)
# Write 'Анализ' sheet
analysis_df = pd.DataFrame(analysis_data, columns=['Объект', 'Тип риска', 'Заголовок', 'Текст'])
analysis_df.to_excel(writer, sheet_name='Анализ', startrow=3, startcol=4, index=False)
# Copy 'Публикации' sheet from original file
df.to_excel(writer, sheet_name='Публикации', index=False)
# Add 'Тех.приложение' sheet
df.to_excel(writer, sheet_name='Тех.приложение', index=False)
output.seek(0)
return output
def main():
st.title("... приступим к анализу... версия 32+")
uploaded_file = st.file_uploader("Выбирайте Excel-файл", type="xlsx")
if uploaded_file is not None:
df = process_file(uploaded_file)
st.subheader("Предпросмотр данных")
st.write(df.head())
st.subheader("Распределение окраски")
fig, axs = plt.subplots(2, 2, figsize=(12, 8))
fig.suptitle("Распределение окраски по моделям")
models = ['ruBERT2','FinBERT', 'RoBERTa', 'FinBERT-Tone']
for i, model in enumerate(models):
ax = axs[i // 2, i % 2]
sentiment_counts = df[model].value_counts()
sentiment_counts.plot(kind='bar', ax=ax)
ax.set_title(f"{model} Sentiment")
ax.set_xlabel("Sentiment")
ax.set_ylabel("Count")
plt.tight_layout()
st.pyplot(fig)
# Offer download of results
output = create_output_file(df)
st.download_button(
label="Скачать результат анализа новостей",
data=output,
file_name="результат_анализа_новостей.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
if __name__ == "__main__":
main()