processor / app.py
pentarosarium's picture
all defs in order
d851af8
raw
history blame
5.62 kB
import streamlit as st
import pandas as pd
import time
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
from transformers import MarianMTModel, MarianTokenizer
import matplotlib.pyplot as plt
from pymystem3 import Mystem
import io
from rapidfuzz import fuzz
# Initialize pymystem3 for lemmatization
mystem = Mystem()
# Set up the sentiment analyzers
vader_analyzer = SentimentIntensityAnalyzer()
finbert = pipeline("sentiment-analysis", model="ProsusAI/finbert")
roberta = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
finbert_tone = pipeline("sentiment-analysis", model="yiyanghkust/finbert-tone")
# Function for lemmatizing Russian text
def lemmatize_text(text):
lemmatized_text = ''.join(mystem.lemmatize(text))
return lemmatized_text
# Translation model for Russian to English
model_name = "Helsinki-NLP/opus-mt-ru-en"
translation_tokenizer = MarianTokenizer.from_pretrained(model_name)
translation_model = MarianMTModel.from_pretrained(model_name)
def translate(text):
inputs = translation_tokenizer(text, return_tensors="pt", truncation=True)
translated_tokens = translation_model.generate(**inputs)
return translation_tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
# Function for VADER sentiment analysis with label mapping
def get_vader_sentiment(text):
score = vader_analyzer.polarity_scores(text)["compound"]
if score > 0.2:
return "Positive"
elif score < -0.2:
return "Negative"
return "Neutral"
# Functions for FinBERT, RoBERTa, and FinBERT-Tone with label mapping
def get_mapped_sentiment(result):
label = result['label'].lower()
if label in ["positive", "label_2", "pos", "pos_label"]:
return "Positive"
elif label in ["negative", "label_0", "neg", "neg_label"]:
return "Negative"
return "Neutral"
def get_finbert_sentiment(text):
result = finbert(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
def get_roberta_sentiment(text):
result = roberta(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
def get_finbert_tone_sentiment(text):
result = finbert_tone(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
#Fuzzy filter out similar news for the same NER
def fuzzy_deduplicate(df, column, threshold=65):
seen_texts = []
indices_to_keep = []
for i, text in enumerate(df[column]):
if pd.isna(text):
indices_to_keep.append(i)
continue
text = str(text)
if not seen_texts or all(fuzz.ratio(text, seen) < threshold for seen in seen_texts):
seen_texts.append(text)
indices_to_keep.append(i)
return df.iloc[indices_to_keep]
def process_file(uploaded_file):
df = pd.read_excel(uploaded_file, sheet_name='Публикации')
# Apply fuzzy deduplication
df = df.groupby('Объект').apply(lambda x: fuzzy_deduplicate(x, 'Выдержки из текста', 65)).reset_index(drop=True)
# Translate texts
translated_texts = []
progress_bar = st.progress(0)
for i, text in enumerate(df['Выдержки из текста']):
translated_text = translate(str(text))
translated_texts.append(translated_text)
progress_bar.progress((i + 1) / len(df))
# Perform sentiment analysis
vader_results = [get_vader_sentiment(text) for text in translated_texts]
finbert_results = [get_finbert_sentiment(text) for text in translated_texts]
roberta_results = [get_roberta_sentiment(text) for text in translated_texts]
finbert_tone_results = [get_finbert_tone_sentiment(text) for text in translated_texts]
# Add results to DataFrame
df['VADER'] = vader_results
df['FinBERT'] = finbert_results
df['RoBERTa'] = roberta_results
df['FinBERT-Tone'] = finbert_tone_results
# Reorder columns
columns_order = ['Объект', 'VADER', 'FinBERT', 'RoBERTa', 'FinBERT-Tone', 'Выдержки из текста']
df = df[columns_order]
return df
def main():
st.title("Sentiment Analysis App")
uploaded_file = st.file_uploader("Choose an Excel file", type="xlsx")
if uploaded_file is not None:
df = process_file(uploaded_file)
st.subheader("Data Preview")
st.write(df.head())
st.subheader("Sentiment Distribution")
fig, axs = plt.subplots(2, 2, figsize=(12, 8))
fig.suptitle("Sentiment Distribution for Each Model")
models = ['VADER', 'FinBERT', 'RoBERTa', 'FinBERT-Tone']
for i, model in enumerate(models):
ax = axs[i // 2, i % 2]
sentiment_counts = df[model].value_counts()
sentiment_counts.plot(kind='bar', ax=ax)
ax.set_title(f"{model} Sentiment")
ax.set_xlabel("Sentiment")
ax.set_ylabel("Count")
plt.tight_layout()
st.pyplot(fig)
# Offer download of results
output = io.BytesIO()
with pd.ExcelWriter(output, engine='openpyxl') as writer:
df.to_excel(writer, index=False)
output.seek(0)
st.download_button(
label="Download results as Excel",
data=output,
file_name="sentiment_analysis_results.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
if __name__ == "__main__":
main()