Commit
·
6ef12b9
1
Parent(s):
bab1cdc
Delete DistilBERT.py
Browse files- DistilBERT.py +0 -145
DistilBERT.py
DELETED
|
@@ -1,145 +0,0 @@
|
|
| 1 |
-
import transformers
|
| 2 |
-
import torch
|
| 3 |
-
from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler
|
| 4 |
-
from transformers import DistilBertTokenizer, DistilBertModel
|
| 5 |
-
import logging
|
| 6 |
-
logging.basicConfig(level=logging.ERROR)
|
| 7 |
-
import torch.nn as nn
|
| 8 |
-
from torch.nn import functional as F
|
| 9 |
-
import torch.optim as optim
|
| 10 |
-
import pandas as pd
|
| 11 |
-
import numpy as np
|
| 12 |
-
|
| 13 |
-
# Điều chỉnh các tham số
|
| 14 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 15 |
-
MAX_LEN = 100
|
| 16 |
-
TRAIN_BATCH_SIZE = 4
|
| 17 |
-
VALID_BATCH_SIZE = 4
|
| 18 |
-
EPOCHS = 1
|
| 19 |
-
LEARNING_RATE = 1e-05
|
| 20 |
-
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased', truncation=True, do_lower_case=True)
|
| 21 |
-
|
| 22 |
-
# Tạo dataframe
|
| 23 |
-
train_df_DB = pd.read_csv('./data/train.csv')
|
| 24 |
-
train_df_DB['label'] = train_df_DB.iloc[:, 1:].values.tolist()
|
| 25 |
-
test_df_DB = pd.read_csv('./data/test.csv')
|
| 26 |
-
test_df_DB = test_df_DB[['text', 'preprocess_sentence', 'label']]
|
| 27 |
-
test_df_DB['label'] = test_df_DB.iloc[:, 2:].values.tolist()
|
| 28 |
-
|
| 29 |
-
# Tạo class
|
| 30 |
-
class BinaryLabel(Dataset):
|
| 31 |
-
|
| 32 |
-
def __init__(self, dataframe, tokenizer, max_len):
|
| 33 |
-
self.tokenizer = tokenizer
|
| 34 |
-
self.data = dataframe
|
| 35 |
-
self.text = dataframe.text
|
| 36 |
-
self.targets = self.data.label
|
| 37 |
-
self.max_len = max_len
|
| 38 |
-
|
| 39 |
-
def __len__(self):
|
| 40 |
-
return len(self.text)
|
| 41 |
-
|
| 42 |
-
def __getitem__(self, index):
|
| 43 |
-
text = str(self.text[index])
|
| 44 |
-
text = " ".join(text.split())
|
| 45 |
-
|
| 46 |
-
inputs = self.tokenizer.encode_plus(
|
| 47 |
-
text,
|
| 48 |
-
None,
|
| 49 |
-
add_special_tokens=True,
|
| 50 |
-
max_length=self.max_len,
|
| 51 |
-
pad_to_max_length=True,
|
| 52 |
-
return_token_type_ids=True
|
| 53 |
-
)
|
| 54 |
-
ids = inputs['input_ids']
|
| 55 |
-
mask = inputs['attention_mask']
|
| 56 |
-
token_type_ids = inputs["token_type_ids"]
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
return {
|
| 60 |
-
'ids': torch.tensor(ids, dtype=torch.long),
|
| 61 |
-
'mask': torch.tensor(mask, dtype=torch.long),
|
| 62 |
-
'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long),
|
| 63 |
-
'targets': torch.tensor(self.targets[index], dtype=torch.float)
|
| 64 |
-
}
|
| 65 |
-
|
| 66 |
-
train_params = {'batch_size': TRAIN_BATCH_SIZE,
|
| 67 |
-
'shuffle': True,
|
| 68 |
-
'num_workers': 0
|
| 69 |
-
}
|
| 70 |
-
|
| 71 |
-
test_params = {'batch_size': VALID_BATCH_SIZE,
|
| 72 |
-
'shuffle': True,
|
| 73 |
-
'num_workers': 0
|
| 74 |
-
}
|
| 75 |
-
|
| 76 |
-
training_set = BinaryLabel(train_df_DB, tokenizer, MAX_LEN)
|
| 77 |
-
testing_set = BinaryLabel(test_df_DB, tokenizer, MAX_LEN)
|
| 78 |
-
|
| 79 |
-
training_loader = DataLoader(training_set, **train_params)
|
| 80 |
-
testing_loader = DataLoader(testing_set, **test_params)
|
| 81 |
-
|
| 82 |
-
# Create model
|
| 83 |
-
class DistilBERTClass(torch.nn.Module):
|
| 84 |
-
def __init__(self):
|
| 85 |
-
super(DistilBERTClass, self).__init__()
|
| 86 |
-
self.l1 = DistilBertModel.from_pretrained("distilbert-base-uncased")
|
| 87 |
-
self.pre_classifier = torch.nn.Linear(768, 768)
|
| 88 |
-
self.dropout = torch.nn.Dropout(0.1)
|
| 89 |
-
self.classifier = torch.nn.Linear(768, 1)
|
| 90 |
-
|
| 91 |
-
def forward(self, input_ids, attention_mask, token_type_ids):
|
| 92 |
-
output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask)
|
| 93 |
-
hidden_state = output_1[0]
|
| 94 |
-
pooler = hidden_state[:, 0]
|
| 95 |
-
pooler = self.pre_classifier(pooler)
|
| 96 |
-
pooler = torch.nn.ReLU()(pooler)
|
| 97 |
-
pooler = self.dropout(pooler)
|
| 98 |
-
output = self.classifier(pooler)
|
| 99 |
-
return output
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
# Validation function
|
| 103 |
-
def validation(testing_loader):
|
| 104 |
-
model_DB.eval()
|
| 105 |
-
fin_targets=[]
|
| 106 |
-
fin_outputs=[]
|
| 107 |
-
with torch.no_grad():
|
| 108 |
-
for _, data in tqdm(enumerate(testing_loader, 0)):
|
| 109 |
-
ids = data['ids'].to(device, dtype = torch.long)
|
| 110 |
-
mask = data['mask'].to(device, dtype = torch.long)
|
| 111 |
-
token_type_ids = data['token_type_ids'].to(device, dtype = torch.long)
|
| 112 |
-
targets = data['targets'].to(device, dtype = torch.float)
|
| 113 |
-
outputs = model_DB(ids, mask, token_type_ids)
|
| 114 |
-
fin_targets.extend(targets.cpu().detach().numpy().tolist())
|
| 115 |
-
fin_outputs.extend(torch.sigmoid(outputs).cpu().detach().numpy().tolist())
|
| 116 |
-
return fin_outputs, fin_targets
|
| 117 |
-
|
| 118 |
-
# Train function
|
| 119 |
-
def train(epoch):
|
| 120 |
-
model.train()
|
| 121 |
-
for _,data in tqdm(enumerate(training_loader, 0)):
|
| 122 |
-
ids = data['ids'].to(device, dtype = torch.long)
|
| 123 |
-
mask = data['mask'].to(device, dtype = torch.long)
|
| 124 |
-
token_type_ids = data['token_type_ids'].to(device, dtype = torch.long)
|
| 125 |
-
targets = data['targets'].to(device, dtype = torch.float)
|
| 126 |
-
|
| 127 |
-
outputs = model(ids, mask, token_type_ids)
|
| 128 |
-
|
| 129 |
-
optimizer.zero_grad()
|
| 130 |
-
loss = loss_fn(outputs, targets)
|
| 131 |
-
if _%50==0:
|
| 132 |
-
print(f'Epoch: {epoch}, Loss: {loss.item()}')
|
| 133 |
-
if loss.item() < 0.07:
|
| 134 |
-
print(f'Breaking the loop as loss is below 0.07: {loss.item()}')
|
| 135 |
-
break
|
| 136 |
-
loss.backward()
|
| 137 |
-
optimizer.step()
|
| 138 |
-
def loss_fn(outputs, targets):
|
| 139 |
-
return torch.nn.BCEWithLogitsLoss()(outputs, targets)
|
| 140 |
-
|
| 141 |
-
model_DB = DistilBERTClass()
|
| 142 |
-
optimizer = torch.optim.Adam(params = model_DB.parameters(), lr=LEARNING_RATE)
|
| 143 |
-
|
| 144 |
-
loaded_model_path = './model_DB_1.pt'
|
| 145 |
-
model_DB.load_state_dict(torch.load(loaded_model_path, map_location=torch.device('cpu')))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|