Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,10 +4,10 @@ st.set_page_config(f'SDSN x GIZ Policy Tracing', layout="wide")
|
|
| 4 |
import seaborn as sns
|
| 5 |
import pdfplumber
|
| 6 |
from pandas import DataFrame
|
| 7 |
-
from keybert import KeyBERT
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
import numpy as np
|
| 10 |
import streamlit as st
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
|
|
@@ -68,11 +68,121 @@ with st.expander("βΉοΈ - About this app", expanded=True):
|
|
| 68 |
|
| 69 |
st.markdown("")
|
| 70 |
st.markdown("")
|
| 71 |
-
st.markdown("## π Step One: Upload document ")
|
| 72 |
|
| 73 |
|
| 74 |
with st.container():
|
| 75 |
st.markdown("## π Step One: Upload document ")
|
| 76 |
##file = st.file_uploader('Upload PDF File', type=['pdf'])
|
| 77 |
text_str = read_(file)
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import seaborn as sns
|
| 5 |
import pdfplumber
|
| 6 |
from pandas import DataFrame
|
|
|
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
import numpy as np
|
| 9 |
import streamlit as st
|
| 10 |
+
import sentence-transformers
|
| 11 |
|
| 12 |
|
| 13 |
|
|
|
|
| 68 |
|
| 69 |
st.markdown("")
|
| 70 |
st.markdown("")
|
| 71 |
+
#st.markdown("## π Step One: Upload document ")
|
| 72 |
|
| 73 |
|
| 74 |
with st.container():
|
| 75 |
st.markdown("## π Step One: Upload document ")
|
| 76 |
##file = st.file_uploader('Upload PDF File', type=['pdf'])
|
| 77 |
text_str = read_(file)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
import seaborn as sns
|
| 81 |
+
import pdfplumber
|
| 82 |
+
from pandas import DataFrame
|
| 83 |
+
from keybert import KeyBERT
|
| 84 |
+
import matplotlib.pyplot as plt
|
| 85 |
+
import numpy as np
|
| 86 |
+
import streamlit as st
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
@st.cache(allow_output_mutation=True)
|
| 91 |
+
def load_model():
|
| 92 |
+
return KeyBERT()
|
| 93 |
+
|
| 94 |
+
kw_model = load_model()
|
| 95 |
+
|
| 96 |
+
keywords = kw_model.extract_keywords(
|
| 97 |
+
text_str,
|
| 98 |
+
keyphrase_ngram_range=(1, 2),
|
| 99 |
+
use_mmr=True,
|
| 100 |
+
stop_words="english",
|
| 101 |
+
top_n=10,
|
| 102 |
+
diversity=0.7,
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
st.markdown("## π What is my document about?")
|
| 106 |
+
|
| 107 |
+
df = (
|
| 108 |
+
DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
|
| 109 |
+
.sort_values(by="Relevancy", ascending=False)
|
| 110 |
+
.reset_index(drop=True)
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
df.index += 1
|
| 114 |
+
|
| 115 |
+
# Add styling
|
| 116 |
+
cmGreen = sns.light_palette("green", as_cmap=True)
|
| 117 |
+
cmRed = sns.light_palette("red", as_cmap=True)
|
| 118 |
+
df = df.style.background_gradient(
|
| 119 |
+
cmap=cmGreen,
|
| 120 |
+
subset=[
|
| 121 |
+
"Relevancy",
|
| 122 |
+
],
|
| 123 |
+
)
|
| 124 |
+
c1, c2, c3 = st.columns([1, 3, 1])
|
| 125 |
+
|
| 126 |
+
format_dictionary = {
|
| 127 |
+
"Relevancy": "{:.1%}",
|
| 128 |
+
}
|
| 129 |
+
|
| 130 |
+
df = df.format(format_dictionary)
|
| 131 |
+
|
| 132 |
+
with c2:
|
| 133 |
+
st.table(df)
|
| 134 |
+
|
| 135 |
+
######## SDG!
|
| 136 |
+
from transformers import pipeline
|
| 137 |
+
|
| 138 |
+
finetuned_checkpoint = "jonas/sdg_classifier_osdg"
|
| 139 |
+
classifier = pipeline("text-classification", model=finetuned_checkpoint)
|
| 140 |
+
|
| 141 |
+
word_list = text_str.split()
|
| 142 |
+
len_word_list = len(word_list)
|
| 143 |
+
par_list = []
|
| 144 |
+
par_len = 130
|
| 145 |
+
for i in range(0,len_word_list // par_len):
|
| 146 |
+
string_part = ' '.join(word_list[i*par_len:(i+1)*par_len])
|
| 147 |
+
par_list.append(string_part)
|
| 148 |
+
|
| 149 |
+
labels = classifier(par_list)
|
| 150 |
+
labels_= [(l['label'],l['score']) for l in labels]
|
| 151 |
+
df = DataFrame(labels_, columns=["SDG", "Relevancy"])
|
| 152 |
+
df['text'] = ['... '+par+' ...' for par in par_list]
|
| 153 |
+
df = df.sort_values(by="Relevancy", ascending=False).reset_index(drop=True)
|
| 154 |
+
df.index += 1
|
| 155 |
+
df =df[df['Relevancy']>.9]
|
| 156 |
+
x = df['SDG'].value_counts()
|
| 157 |
+
|
| 158 |
+
plt.rcParams['font.size'] = 25
|
| 159 |
+
colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(x)))
|
| 160 |
+
# plot
|
| 161 |
+
fig, ax = plt.subplots()
|
| 162 |
+
ax.pie(x, colors=colors, radius=2, center=(4, 4),
|
| 163 |
+
wedgeprops={"linewidth": 1, "edgecolor": "white"}, frame=False,labels =list(x.index))
|
| 164 |
+
|
| 165 |
+
st.markdown("## π Anything related to SDGs?")
|
| 166 |
+
|
| 167 |
+
c4, c5, c6 = st.columns([5, 7, 1])
|
| 168 |
+
|
| 169 |
+
# Add styling
|
| 170 |
+
cmGreen = sns.light_palette("green", as_cmap=True)
|
| 171 |
+
cmRed = sns.light_palette("red", as_cmap=True)
|
| 172 |
+
df = df.style.background_gradient(
|
| 173 |
+
cmap=cmGreen,
|
| 174 |
+
subset=[
|
| 175 |
+
"Relevancy",
|
| 176 |
+
],
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
format_dictionary = {
|
| 180 |
+
"Relevancy": "{:.1%}",
|
| 181 |
+
}
|
| 182 |
+
|
| 183 |
+
df = df.format(format_dictionary)
|
| 184 |
+
|
| 185 |
+
with c4:
|
| 186 |
+
st.pyplot(fig)
|
| 187 |
+
with c5:
|
| 188 |
+
st.table(df)
|