peterciank commited on
Commit
7949a86
·
verified ·
1 Parent(s): 0a34c23

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +317 -0
app.py ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import gradio as gr
4
+
5
+ from text_generation import Client, InferenceAPIClient
6
+
7
+ openchat_preprompt = (
8
+ "\n<human>: Hi!\n<bot>: My name is Bot, model version is 0.15, part of an open-source kit for "
9
+ "fine-tuning new bots! I was created by Together, LAION, and Ontocord.ai and the open-source "
10
+ "community. I am not human, not evil and not alive, and thus have no thoughts and feelings, "
11
+ "but I am programmed to be helpful, polite, honest, and friendly.\n"
12
+ )
13
+
14
+
15
+ def get_client(model: str):
16
+ if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
17
+ return Client(os.getenv("OPENCHAT_API_URL"))
18
+ return InferenceAPIClient(model, token=os.getenv("HF_TOKEN", None))
19
+
20
+
21
+ def get_usernames(model: str):
22
+ """
23
+ Returns:
24
+ (str, str, str, str): pre-prompt, username, bot name, separator
25
+ """
26
+ if model in ("OpenAssistant/oasst-sft-1-pythia-12b", "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"):
27
+ return "", "<|prompter|>", "<|assistant|>", "<|endoftext|>"
28
+ if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
29
+ return openchat_preprompt, "<human>: ", "<bot>: ", "\n"
30
+ return "", "User: ", "Assistant: ", "\n"
31
+
32
+
33
+ def predict(
34
+ model: str,
35
+ inputs: str,
36
+ typical_p: float,
37
+ top_p: float,
38
+ temperature: float,
39
+ top_k: int,
40
+ repetition_penalty: float,
41
+ watermark: bool,
42
+ chatbot,
43
+ history,
44
+ ):
45
+ client = get_client(model)
46
+ preprompt, user_name, assistant_name, sep = get_usernames(model)
47
+
48
+ history.append(inputs)
49
+
50
+ past = []
51
+ for data in chatbot:
52
+ user_data, model_data = data
53
+
54
+ if not user_data.startswith(user_name):
55
+ user_data = user_name + user_data
56
+ if not model_data.startswith(sep + assistant_name):
57
+ model_data = sep + assistant_name + model_data
58
+
59
+ past.append(user_data + model_data.rstrip() + sep)
60
+
61
+ if not inputs.startswith(user_name):
62
+ inputs = user_name + inputs
63
+
64
+ total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip()
65
+
66
+ partial_words = ""
67
+
68
+ if model in ("OpenAssistant/oasst-sft-1-pythia-12b", "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"):
69
+ iterator = client.generate_stream(
70
+ total_inputs,
71
+ typical_p=typical_p,
72
+ truncate=1000,
73
+ watermark=watermark,
74
+ max_new_tokens=500,
75
+ )
76
+ else:
77
+ iterator = client.generate_stream(
78
+ total_inputs,
79
+ top_p=top_p if top_p < 1.0 else None,
80
+ top_k=top_k,
81
+ truncate=1000,
82
+ repetition_penalty=repetition_penalty,
83
+ watermark=watermark,
84
+ temperature=temperature,
85
+ max_new_tokens=500,
86
+ stop_sequences=[user_name.rstrip(), assistant_name.rstrip()],
87
+ )
88
+
89
+ for i, response in enumerate(iterator):
90
+ if response.token.special:
91
+ continue
92
+
93
+ partial_words = partial_words + response.token.text
94
+ if partial_words.endswith(user_name.rstrip()):
95
+ partial_words = partial_words.rstrip(user_name.rstrip())
96
+ if partial_words.endswith(assistant_name.rstrip()):
97
+ partial_words = partial_words.rstrip(assistant_name.rstrip())
98
+
99
+ if i == 0:
100
+ history.append(" " + partial_words)
101
+ elif response.token.text not in user_name:
102
+ history[-1] = partial_words
103
+
104
+ chat = [
105
+ (history[i].strip(), history[i + 1].strip())
106
+ for i in range(0, len(history) - 1, 2)
107
+ ]
108
+ yield chat, history
109
+
110
+
111
+ def reset_textbox():
112
+ return gr.update(value="")
113
+
114
+
115
+ def radio_on_change(
116
+ value: str,
117
+ disclaimer,
118
+ typical_p,
119
+ top_p,
120
+ top_k,
121
+ temperature,
122
+ repetition_penalty,
123
+ watermark,
124
+ ):
125
+ if value in ("OpenAssistant/oasst-sft-1-pythia-12b", "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"):
126
+ typical_p = typical_p.update(value=0.2, visible=True)
127
+ top_p = top_p.update(visible=False)
128
+ top_k = top_k.update(visible=False)
129
+ temperature = temperature.update(visible=False)
130
+ disclaimer = disclaimer.update(visible=False)
131
+ repetition_penalty = repetition_penalty.update(visible=False)
132
+ watermark = watermark.update(False)
133
+ elif value == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
134
+ typical_p = typical_p.update(visible=False)
135
+ top_p = top_p.update(value=0.25, visible=True)
136
+ top_k = top_k.update(value=50, visible=True)
137
+ temperature = temperature.update(value=0.6, visible=True)
138
+ repetition_penalty = repetition_penalty.update(value=1.01, visible=True)
139
+ watermark = watermark.update(False)
140
+ disclaimer = disclaimer.update(visible=True)
141
+ else:
142
+ typical_p = typical_p.update(visible=False)
143
+ top_p = top_p.update(value=0.95, visible=True)
144
+ top_k = top_k.update(value=4, visible=True)
145
+ temperature = temperature.update(value=0.5, visible=True)
146
+ repetition_penalty = repetition_penalty.update(value=1.03, visible=True)
147
+ watermark = watermark.update(True)
148
+ disclaimer = disclaimer.update(visible=False)
149
+ return (
150
+ disclaimer,
151
+ typical_p,
152
+ top_p,
153
+ top_k,
154
+ temperature,
155
+ repetition_penalty,
156
+ watermark,
157
+ )
158
+
159
+
160
+ title = """<h1 align="center">Large Language Model Chat API</h1>"""
161
+ description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
162
+ ```
163
+ User: <utterance>
164
+ Assistant: <utterance>
165
+ User: <utterance>
166
+ Assistant: <utterance>
167
+ ...
168
+ ```
169
+ In this app, you can explore the outputs of multiple LLMs when prompted in this way.
170
+ """
171
+
172
+ text_generation_inference = """
173
+ <div align="center">Powered by: <a href=https://github.com/huggingface/text-generation-inference>Text Generation Inference</a></div>
174
+ """
175
+
176
+ openchat_disclaimer = """
177
+ <div align="center">Checkout the official <a href=https://huggingface.co/spaces/togethercomputer/OpenChatKit>OpenChatKit feedback app</a> for the full experience.</div>
178
+ """
179
+
180
+ with gr.Blocks(
181
+ css="""#col_container {margin-left: auto; margin-right: auto;}
182
+ #chatbot {height: 520px; overflow: auto;}"""
183
+ ) as demo:
184
+ gr.HTML(title)
185
+ gr.Markdown(text_generation_inference, visible=True)
186
+ with gr.Column(elem_id="col_container"):
187
+ model = gr.Radio(
188
+ value="OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
189
+ choices=[
190
+ "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
191
+ "OpenAssistant/oasst-sft-1-pythia-12b",
192
+ # "togethercomputer/GPT-NeoXT-Chat-Base-20B",
193
+ "google/flan-t5-xxl",
194
+ "google/flan-ul2",
195
+ "bigscience/bloom",
196
+ "bigscience/bloomz",
197
+ "EleutherAI/gpt-neox-20b",
198
+ ],
199
+ label="Model",
200
+ interactive=True,
201
+ )
202
+
203
+ chatbot = gr.Chatbot(elem_id="chatbot")
204
+ inputs = gr.Textbox(
205
+ placeholder="Hi there!", label="Type an input and press Enter"
206
+ )
207
+ disclaimer = gr.Markdown(openchat_disclaimer, visible=False)
208
+ state = gr.State([])
209
+ b1 = gr.Button()
210
+
211
+ with gr.Accordion("Parameters", open=False):
212
+ typical_p = gr.Slider(
213
+ minimum=-0,
214
+ maximum=1.0,
215
+ value=0.2,
216
+ step=0.05,
217
+ interactive=True,
218
+ label="Typical P mass",
219
+ )
220
+ top_p = gr.Slider(
221
+ minimum=-0,
222
+ maximum=1.0,
223
+ value=0.25,
224
+ step=0.05,
225
+ interactive=True,
226
+ label="Top-p (nucleus sampling)",
227
+ visible=False,
228
+ )
229
+ temperature = gr.Slider(
230
+ minimum=-0,
231
+ maximum=5.0,
232
+ value=0.6,
233
+ step=0.1,
234
+ interactive=True,
235
+ label="Temperature",
236
+ visible=False,
237
+ )
238
+ top_k = gr.Slider(
239
+ minimum=1,
240
+ maximum=50,
241
+ value=50,
242
+ step=1,
243
+ interactive=True,
244
+ label="Top-k",
245
+ visible=False,
246
+ )
247
+ repetition_penalty = gr.Slider(
248
+ minimum=0.1,
249
+ maximum=3.0,
250
+ value=1.03,
251
+ step=0.01,
252
+ interactive=True,
253
+ label="Repetition Penalty",
254
+ visible=False,
255
+ )
256
+ watermark = gr.Checkbox(value=False, label="Text watermarking")
257
+
258
+ model.change(
259
+ lambda value: radio_on_change(
260
+ value,
261
+ disclaimer,
262
+ typical_p,
263
+ top_p,
264
+ top_k,
265
+ temperature,
266
+ repetition_penalty,
267
+ watermark,
268
+ ),
269
+ inputs=model,
270
+ outputs=[
271
+ disclaimer,
272
+ typical_p,
273
+ top_p,
274
+ top_k,
275
+ temperature,
276
+ repetition_penalty,
277
+ watermark,
278
+ ],
279
+ )
280
+
281
+ inputs.submit(
282
+ predict,
283
+ [
284
+ model,
285
+ inputs,
286
+ typical_p,
287
+ top_p,
288
+ temperature,
289
+ top_k,
290
+ repetition_penalty,
291
+ watermark,
292
+ chatbot,
293
+ state,
294
+ ],
295
+ [chatbot, state],
296
+ )
297
+ b1.click(
298
+ predict,
299
+ [
300
+ model,
301
+ inputs,
302
+ typical_p,
303
+ top_p,
304
+ temperature,
305
+ top_k,
306
+ repetition_penalty,
307
+ watermark,
308
+ chatbot,
309
+ state,
310
+ ],
311
+ [chatbot, state],
312
+ )
313
+ b1.click(reset_textbox, [], [inputs])
314
+ inputs.submit(reset_textbox, [], [inputs])
315
+
316
+ gr.Markdown(description)
317
+ demo.queue(concurrency_count=16).launch(debug=True)