Spaces:
Running
Running
import streamlit as st | |
import requests | |
import os | |
# Define the endpoint and API key | |
api_url = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct" | |
api_key = os.getenv('HFSecret') | |
headers = { | |
"Authorization": f"Bearer {api_key}" | |
} | |
# API call function | |
def call_huggingface_api(prompt): | |
data = {"inputs": prompt, "parameters": {"max_length": 500, "temperature": 0.5}} | |
response = requests.post(api_url, headers=headers, json=data) | |
if response.status_code != 200: | |
st.error(f"Error: {response.status_code} - {response.text}") | |
return None | |
return response.json() | |
# Streamlit layout | |
st.title("Sentiment Analysis, Summarization, and Keyword Extraction") | |
text_input = st.text_area("Enter text for analysis") | |
if st.button("Analyze"): | |
if text_input: | |
# Sentiment Analysis | |
sentiment_prompt = f"Perform sentiment analysis on the following text: {text_input}" | |
sentiment_result = call_huggingface_api(sentiment_prompt) | |
if sentiment_result: | |
st.write("Sentiment Analysis Result:", sentiment_result[0]['generated_text']) | |
# Summarization | |
summarization_prompt = f"Summarize the following text: {text_input}" | |
summarization_result = call_huggingface_api(summarization_prompt) | |
if summarization_result: | |
st.write("Summarization Result:", summarization_result[0]['generated_text']) | |
# Keyword Extraction (Using LLM, not RAKE) | |
keyword_prompt = f"Extract important keywords from the following text: {text_input}" | |
keyword_result = call_huggingface_api(keyword_prompt) | |
if keyword_result: | |
st.write("Keyword Extraction Result:", keyword_result[0]['generated_text']) | |
else: | |
st.warning("Please enter some text for analysis.") | |