File size: 4,689 Bytes
c9473c9
623e1bf
b7a75e4
 
623e1bf
 
 
 
4d7e87d
b7a75e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d7e87d
 
 
 
 
 
623e1bf
c333b0b
623e1bf
 
 
 
 
 
 
4d7e87d
c9473c9
 
f397a20
c9473c9
 
 
b7a75e4
4d7e87d
 
b7a75e4
 
4d7e87d
 
 
 
 
b7a75e4
f397a20
c9473c9
f397a20
c9473c9
 
 
 
 
 
b7a75e4
4d7e87d
 
 
 
c333b0b
 
4d7e87d
 
 
 
 
 
 
 
 
 
b7a75e4
4d7e87d
 
 
 
 
 
 
 
c333b0b
f397a20
36a76ae
c333b0b
4d7e87d
36a76ae
4d7e87d
36a76ae
 
 
 
 
b7a75e4
4d7e87d
 
36a76ae
4d7e87d
36a76ae
 
1018e38
36a76ae
 
 
 
 
4d7e87d
36a76ae
 
 
 
4d7e87d
 
 
36a76ae
 
 
623e1bf
 
c9473c9
e041428
c9473c9
36a76ae
b7a75e4
623e1bf
 
b7a75e4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import time
import torch
import gc
from transformers import AutoConfig, AutoModelForImageSegmentation
from PIL import Image
from torchvision import transforms
import gradio as gr

def load_model():
    # Fetch the config first (with trust_remote_code=True)
    config = AutoConfig.from_pretrained("zhengpeng7/BiRefNet_lite", trust_remote_code=True)
    
    # Ensure it's not treated as a seq2seq model
    config.is_encoder_decoder = False

    # Optionally, block calls to get_text_config if needed:
    # config.get_text_config = lambda decoder=True: None

    # Now load the model with our tweaked config
    model = AutoModelForImageSegmentation.from_pretrained(
        "zhengpeng7/BiRefNet_lite",
        config=config,
        trust_remote_code=True
    )

    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    model.to(device)
    model.eval()
    return model, device

birefnet, device = load_model()

# Preprocessing
image_size = (1024, 1024)
transform_image = transforms.Compose([
    transforms.Resize(image_size),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

def run_inference(images, model, device):
    inputs = []
    original_sizes = []
    for img in images:
        original_sizes.append(img.size)
        inputs.append(transform_image(img))
    input_tensor = torch.stack(inputs).to(device)

    try:
        with torch.no_grad():
            # If the last layer is returned as [-1], 
            # adjust accordingly or see how your model outputs are structured
            preds = model(input_tensor)[-1].sigmoid().cpu()
    except torch.OutOfMemoryError:
        del input_tensor
        torch.cuda.empty_cache()
        raise

    # Post-process
    results = []
    for i, img in enumerate(images):
        pred = preds[i].squeeze()
        pred_pil = transforms.ToPILImage()(pred)
        mask = pred_pil.resize(original_sizes[i])
        result = Image.new("RGBA", original_sizes[i], (0, 0, 0, 0))
        result.paste(img, mask=mask)
        results.append(result)

    # Cleanup
    del input_tensor, preds
    gc.collect()
    torch.cuda.empty_cache()
    return results

def binary_search_max(images):
    # After OOM, try to find max feasible batch
    low, high = 1, len(images)
    best = None
    best_count = 0
    while low <= high:
        mid = (low + high) // 2
        batch = images[:mid]
        try:
            global birefnet, device
            birefnet, device = load_model()  # re-init to reduce memory fragmentation
            res = run_inference(batch, birefnet, device)
            best = res
            best_count = mid
            low = mid + 1
        except torch.OutOfMemoryError:
            high = mid - 1
    return best, best_count

def extract_objects(filepaths):
    images = [Image.open(p).convert("RGB") for p in filepaths]
    start_time = time.time()

    # First attempt: all images
    try:
        results = run_inference(images, birefnet, device)
        end_time = time.time()
        total_time = end_time - start_time
        summary = f"Total request time: {total_time:.2f}s\nProcessed {len(images)} images successfully."
        return results, summary
    except torch.OutOfMemoryError:
        # OOM occurred, try fallback
        oom_time = time.time()
        initial_attempt_time = oom_time - start_time
        
        best, best_count = binary_search_max(images)
        end_time = time.time()
        total_time = end_time - start_time

        if best is None:
            # Not even 1 image works
            summary = (
                f"Initial attempt OOM after {initial_attempt_time:.2f}s.\n"
                f"Could not process even a single image.\n"
                f"Total time including fallback attempts: {total_time:.2f}s."
            )
            return [], summary
        else:
            summary = (
                f"Initial attempt OOM after {initial_attempt_time:.2f}s.\n"
                f"Found that {best_count} images can be processed without OOM.\n"
                f"Total time including fallback attempts: {total_time:.2f}s.\n"
                f"Next time, try using up to {best_count} images."
            )
            return best, summary

iface = gr.Interface(
    fn=extract_objects,
    inputs=gr.Files(label="Upload Multiple Images", type="filepath", file_count="multiple"),
    outputs=[gr.Gallery(label="Processed Images"), gr.Textbox(label="Timing Info")],
    title="BiRefNet Bulk Background Removal with On-Demand Fallback",
    description="Upload as many images as you want. If OOM occurs, fallback logic will find the max feasible number."
)

if __name__ == "__main__":
    iface.launch()