petergpt's picture
Update app.py
07d7c0a verified
raw
history blame
5.67 kB
import cv2
import gradio as gr
import os
from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import matplotlib.pyplot as plt
import warnings
import time
warnings.filterwarnings("ignore")
# Clone the DIS repo and move contents (make sure this only happens once per session)
os.system("git clone https://github.com/xuebinqin/DIS")
os.system("mv DIS/IS-Net/* .")
# project imports
from data_loader_cache import normalize, im_reader, im_preprocess
from models import *
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Download official weights
if not os.path.exists("saved_models"):
os.mkdir("saved_models")
os.system("mv isnet.pth saved_models/")
class GOSNormalize(object):
'''
Normalize the Image using torch.transforms
'''
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
self.mean = mean
self.std = std
def __call__(self,image):
image = normalize(image, self.mean, self.std)
return image
transform = transforms.Compose([GOSNormalize([0.5, 0.5, 0.5], [1.0, 1.0, 1.0])])
def load_image(im_path, hypar):
im = im_reader(im_path)
im, im_shp = im_preprocess(im, hypar["cache_size"])
im = torch.divide(im, 255.0)
shape = torch.from_numpy(np.array(im_shp))
return transform(im).unsqueeze(0), shape.unsqueeze(0)
def build_model(hypar, device):
net = hypar["model"]
# convert to half precision if needed
if(hypar["model_digit"]=="half"):
net.half()
for layer in net.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.float()
net.to(device)
if hypar["restore_model"] != "":
net.load_state_dict(torch.load(os.path.join(hypar["model_path"], hypar["restore_model"]), map_location=device))
net.to(device)
net.eval()
return net
def predict(net, inputs_val, shapes_val, hypar, device):
net.eval()
if hypar["model_digit"] == "full":
inputs_val = inputs_val.type(torch.FloatTensor)
else:
inputs_val = inputs_val.type(torch.HalfTensor)
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
ds_val = net(inputs_val_v)[0]
pred_val = ds_val[0][0, :, :, :]
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val, 0),
(shapes_val[0][0], shapes_val[0][1]),
mode='bilinear'))
ma = torch.max(pred_val)
mi = torch.min(pred_val)
# normalize to [0, 1], add a small epsilon to avoid division by zero
pred_val = (pred_val - mi) / (ma - mi + 1e-8)
if device == 'cuda':
torch.cuda.empty_cache()
return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8)
# Parameters
hypar = {
"model_path": "./saved_models",
"restore_model": "isnet.pth",
"interm_sup": False,
"model_digit": "full",
"seed": 0,
"cache_size": [1024, 1024],
"input_size": [1024, 1024],
"crop_size": [1024, 1024],
"model": ISNetDIS()
}
# Build the model
net = build_model(hypar, device)
def inference(img1, img2, img3, logs):
"""
Process up to 3 images in parallel (each can be None if not provided).
"""
start_time = time.time()
logs = logs or "" # initialize logs if None
# Gather images into a list (filter out None)
image_paths = [i for i in [img1, img2, img3] if i is not None]
if not image_paths:
# No images were uploaded
logs += f"No images to process.\n"
return [], logs, logs
processed_pairs = []
for path in image_paths:
image_tensor, orig_size = load_image(path, hypar)
mask = predict(net, image_tensor, orig_size, hypar, device)
pil_mask = Image.fromarray(mask).convert('L')
im_rgb = Image.open(path).convert("RGB")
im_rgba = im_rgb.copy()
im_rgba.putalpha(pil_mask)
processed_pairs.append([im_rgba, pil_mask])
end_time = time.time()
elapsed = round(end_time - start_time, 2)
# Flatten into final gallery list
final_images = []
for pair in processed_pairs:
final_images.extend(pair)
logs += f"Processed {len(processed_pairs)} image(s) in {elapsed} second(s).\n"
# Return the flattened gallery, state, and logs text
return final_images, logs, logs
title = "Highly Accurate Dichotomous Image Segmentation"
description = (
"This is an unofficial demo for DIS, a model that can remove the background from up to 3 images. "
"Simply upload 1 to 3 images, or use the example images. "
"GitHub: https://github.com/xuebinqin/DIS<br>"
"Telegram bot: https://t.me/restoration_photo_bot<br>"
"[![](https://img.shields.io/twitter/follow/DoEvent?label=@DoEvent&style=social)](https://twitter.com/DoEvent)"
)
article = (
"<div><center><img src='https://visitor-badge.glitch.me/badge?page_id=max_skobeev_dis_cmp_public' "
"alt='visitor badge'></center></div>"
)
interface = gr.Interface(
fn=inference,
inputs=[
gr.Image(type='filepath', label='Image 1'),
gr.Image(type='filepath', label='Image 2'),
gr.Image(type='filepath', label='Image 3'),
gr.State()
],
outputs=[
gr.Gallery(label="Output (rgba + mask)"),
gr.State(),
gr.Textbox(label="Logs", lines=6)
],
examples=[
["robot.png", None, None],
["robot.png", "ship.png", None],
],
title=title,
description=description,
article=article,
flagging_mode="never",
cache_mode="lazy"
).queue().launch(show_api=True, show_error=True)