Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,7 +10,411 @@ from langchain.schema import SystemMessage as SM,HumanMessage as HM, AIMessage a
|
|
| 10 |
from langchain import hub
|
| 11 |
import os
|
| 12 |
import torch
|
|
|
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
from langchain_core.prompts.chat import ChatPromptTemplate, MessagesPlaceholder
|
| 16 |
system = '''Respond to the human as helpfully and accurately as possible. You have access to the following tools:
|
|
@@ -74,97 +478,8 @@ from langchain_core.callbacks.manager import AsyncCallbackManagerForLLMRun
|
|
| 74 |
from langchain_core.runnables import run_in_executor
|
| 75 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 76 |
import torch
|
| 77 |
-
class Chatchat(BaseChatModel):
|
| 78 |
-
|
| 79 |
-
model_name: str = "peterpeter8585/deepseek_1"
|
| 80 |
-
tokenizer : AutoTokenizer = None
|
| 81 |
-
model: AutoModelForCausalLM = None
|
| 82 |
-
model_path: str = None
|
| 83 |
-
|
| 84 |
-
def __init__(self, model_path, **kwargs: Any) -> None:
|
| 85 |
-
super().__init__(**kwargs)
|
| 86 |
-
if model_path is not None:
|
| 87 |
-
self.model_name = model_path
|
| 88 |
-
|
| 89 |
-
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name, trust_remote_code=True)
|
| 90 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
| 91 |
-
self.model_name, trust_remote_code=True)
|
| 92 |
-
self.model=self
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
def _call(
|
| 96 |
-
self,
|
| 97 |
-
prompt: str,
|
| 98 |
-
stop: Optional[List[str]] = None,
|
| 99 |
-
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
| 100 |
-
**kwargs: Any,
|
| 101 |
-
) -> str:
|
| 102 |
-
# Load and preprocess the image
|
| 103 |
-
messages = [
|
| 104 |
-
{"role": "system", "content": "You are Chatchat.A helpful assistant at code."},
|
| 105 |
-
{"role": "user", "content": prompt}
|
| 106 |
-
]
|
| 107 |
-
|
| 108 |
-
text = self.tokenizer.apply_chat_template(
|
| 109 |
-
messages,
|
| 110 |
-
tokenize=False,
|
| 111 |
-
add_generation_prompt=True
|
| 112 |
-
)
|
| 113 |
-
model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device)
|
| 114 |
-
generated_ids = self.model.generate(
|
| 115 |
-
**model_inputs,
|
| 116 |
-
max_new_tokens=512
|
| 117 |
-
)
|
| 118 |
-
generated_ids = [
|
| 119 |
-
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
| 120 |
-
]
|
| 121 |
-
|
| 122 |
-
response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 123 |
-
|
| 124 |
-
return response
|
| 125 |
-
|
| 126 |
-
async def _acall(
|
| 127 |
-
self,
|
| 128 |
-
prompt: str,
|
| 129 |
-
stop: Optional[List[str]] = None,
|
| 130 |
-
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
| 131 |
-
**kwargs: Any,
|
| 132 |
-
) -> str:
|
| 133 |
-
# Implement the async logic to generate a response from the model
|
| 134 |
-
return await run_in_executor(
|
| 135 |
-
None,
|
| 136 |
-
self._call,
|
| 137 |
-
prompt,
|
| 138 |
-
stop,
|
| 139 |
-
run_manager.get_sync() if run_manager else None,
|
| 140 |
-
**kwargs,
|
| 141 |
-
)
|
| 142 |
|
| 143 |
-
@property
|
| 144 |
-
def _llm_type(self) -> str:
|
| 145 |
-
return "custom-llm-chat"
|
| 146 |
-
|
| 147 |
-
@property
|
| 148 |
-
def _identifying_params(self) -> Dict[str, Any]:
|
| 149 |
-
return {"model_name": self.model_name}
|
| 150 |
|
| 151 |
-
def _generate(
|
| 152 |
-
self,
|
| 153 |
-
messages: List[BaseMessage],
|
| 154 |
-
stop: Optional[List[str]] = None,
|
| 155 |
-
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
| 156 |
-
**kwargs: Any,
|
| 157 |
-
) -> ChatResult:
|
| 158 |
-
# Assumes the first message contains the prompt and the image path is in metadata
|
| 159 |
-
prompt = messages[0].content
|
| 160 |
-
response_text = self._call(prompt, stop, run_manager, **kwargs)
|
| 161 |
-
|
| 162 |
-
# Create AIMessage with the response
|
| 163 |
-
ai_message = AIMessage(content=response_text)
|
| 164 |
-
return ChatResult(generations=[ChatGeneration(message=ai_message)])
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
llm=Chatchat(model_path=None)
|
| 168 |
#from transformers import pipeline,AutoModelForCausalLM as M,AutoTokenizer as T
|
| 169 |
#m=M.from_pretrained("peterpeter8585/syai4.3")
|
| 170 |
#t=T.from_pretrained("peterpeter8585/syai4.3")
|
|
|
|
| 10 |
from langchain import hub
|
| 11 |
import os
|
| 12 |
import torch
|
| 13 |
+
from __future__ import annotations # type: ignore[import-not-found]
|
| 14 |
|
| 15 |
+
import importlib.util
|
| 16 |
+
import logging
|
| 17 |
+
from typing import Any, Dict, Iterator, List, Mapping, Optional
|
| 18 |
+
|
| 19 |
+
from langchain_core.callbacks import CallbackManagerForLLMRun
|
| 20 |
+
from langchain_core.language_models.llms import BaseLLM
|
| 21 |
+
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
|
| 22 |
+
from pydantic import ConfigDict, model_validator
|
| 23 |
+
|
| 24 |
+
from ..utils.import_utils import (
|
| 25 |
+
IMPORT_ERROR,
|
| 26 |
+
is_ipex_available,
|
| 27 |
+
is_openvino_available,
|
| 28 |
+
is_optimum_intel_available,
|
| 29 |
+
is_optimum_intel_version,
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
DEFAULT_MODEL_ID = "gpt2"
|
| 33 |
+
DEFAULT_TASK = "text-generation"
|
| 34 |
+
VALID_TASKS = (
|
| 35 |
+
"text2text-generation",
|
| 36 |
+
"text-generation",
|
| 37 |
+
"summarization",
|
| 38 |
+
"translation",
|
| 39 |
+
)
|
| 40 |
+
DEFAULT_BATCH_SIZE = 4
|
| 41 |
+
_MIN_OPTIMUM_VERSION = "1.21"
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
logger = logging.getLogger(__name__)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class HuggingFacePipeline(BaseLLM):
|
| 48 |
+
"""HuggingFace Pipeline API.
|
| 49 |
+
|
| 50 |
+
To use, you should have the ``transformers`` python package installed.
|
| 51 |
+
|
| 52 |
+
Only supports `text-generation`, `text2text-generation`, `summarization` and
|
| 53 |
+
`translation` for now.
|
| 54 |
+
|
| 55 |
+
Example using from_model_id:
|
| 56 |
+
.. code-block:: python
|
| 57 |
+
|
| 58 |
+
from langchain_huggingface import HuggingFacePipeline
|
| 59 |
+
hf = HuggingFacePipeline.from_model_id(
|
| 60 |
+
model_id="gpt2",
|
| 61 |
+
task="text-generation",
|
| 62 |
+
pipeline_kwargs={"max_new_tokens": 10},
|
| 63 |
+
)
|
| 64 |
+
Example passing pipeline in directly:
|
| 65 |
+
.. code-block:: python
|
| 66 |
+
|
| 67 |
+
from langchain_huggingface import HuggingFacePipeline
|
| 68 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 69 |
+
|
| 70 |
+
model_id = "gpt2"
|
| 71 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 72 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
| 73 |
+
pipe = pipeline(
|
| 74 |
+
"text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10
|
| 75 |
+
)
|
| 76 |
+
hf = HuggingFacePipeline(pipeline=pipe)
|
| 77 |
+
"""
|
| 78 |
+
|
| 79 |
+
pipeline: Any = None #: :meta private:
|
| 80 |
+
model_id: Optional[str] = None
|
| 81 |
+
"""The model name. If not set explicitly by the user,
|
| 82 |
+
it will be inferred from the provided pipeline (if available).
|
| 83 |
+
If neither is provided, the DEFAULT_MODEL_ID will be used."""
|
| 84 |
+
model_kwargs: Optional[dict] = None
|
| 85 |
+
"""Keyword arguments passed to the model."""
|
| 86 |
+
pipeline_kwargs: Optional[dict] = None
|
| 87 |
+
"""Keyword arguments passed to the pipeline."""
|
| 88 |
+
batch_size: int = DEFAULT_BATCH_SIZE
|
| 89 |
+
"""Batch size to use when passing multiple documents to generate."""
|
| 90 |
+
|
| 91 |
+
model_config = ConfigDict(
|
| 92 |
+
extra="forbid",
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
@model_validator(mode="before")
|
| 96 |
+
@classmethod
|
| 97 |
+
def pre_init_validator(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
| 98 |
+
"""Ensure model_id is set either by pipeline or user input."""
|
| 99 |
+
if "model_id" not in values:
|
| 100 |
+
if "pipeline" in values and values["pipeline"]:
|
| 101 |
+
values["model_id"] = values["pipeline"].model.name_or_path
|
| 102 |
+
else:
|
| 103 |
+
values["model_id"] = DEFAULT_MODEL_ID
|
| 104 |
+
return values
|
| 105 |
+
|
| 106 |
+
@classmethod
|
| 107 |
+
def from_model_id(
|
| 108 |
+
cls,
|
| 109 |
+
model_id: str,
|
| 110 |
+
task: str,
|
| 111 |
+
backend: str = "default",
|
| 112 |
+
device: Optional[int] = None,
|
| 113 |
+
device_map: Optional[str] = None,
|
| 114 |
+
model_kwargs: Optional[dict] = None,
|
| 115 |
+
pipeline_kwargs: Optional[dict] = None,
|
| 116 |
+
batch_size: int = DEFAULT_BATCH_SIZE,
|
| 117 |
+
**kwargs: Any,
|
| 118 |
+
) -> HuggingFacePipeline:
|
| 119 |
+
"""Construct the pipeline object from model_id and task."""
|
| 120 |
+
try:
|
| 121 |
+
from transformers import ( # type: ignore[import]
|
| 122 |
+
AutoModelForCausalLM,
|
| 123 |
+
AutoModelForSeq2SeqLM,
|
| 124 |
+
AutoTokenizer,
|
| 125 |
+
)
|
| 126 |
+
from transformers import pipeline as hf_pipeline # type: ignore[import]
|
| 127 |
+
|
| 128 |
+
except ImportError:
|
| 129 |
+
raise ValueError(
|
| 130 |
+
"Could not import transformers python package. "
|
| 131 |
+
"Please install it with `pip install transformers`."
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
_model_kwargs = model_kwargs.copy() if model_kwargs else {}
|
| 135 |
+
if device_map is not None:
|
| 136 |
+
if device is not None:
|
| 137 |
+
raise ValueError(
|
| 138 |
+
"Both `device` and `device_map` are specified. "
|
| 139 |
+
"`device` will override `device_map`. "
|
| 140 |
+
"You will most likely encounter unexpected behavior."
|
| 141 |
+
"Please remove `device` and keep "
|
| 142 |
+
"`device_map`."
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
if "device_map" in _model_kwargs:
|
| 146 |
+
raise ValueError("`device_map` is already specified in `model_kwargs`.")
|
| 147 |
+
|
| 148 |
+
_model_kwargs["device_map"] = device_map
|
| 149 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)
|
| 150 |
+
|
| 151 |
+
if backend in {"openvino", "ipex"}:
|
| 152 |
+
if task not in VALID_TASKS:
|
| 153 |
+
raise ValueError(
|
| 154 |
+
f"Got invalid task {task}, "
|
| 155 |
+
f"currently only {VALID_TASKS} are supported"
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
err_msg = f'Backend: {backend} {IMPORT_ERROR.format(f"optimum[{backend}]")}'
|
| 159 |
+
if not is_optimum_intel_available():
|
| 160 |
+
raise ImportError(err_msg)
|
| 161 |
+
|
| 162 |
+
# TODO: upgrade _MIN_OPTIMUM_VERSION to 1.22 after release
|
| 163 |
+
min_optimum_version = (
|
| 164 |
+
"1.22"
|
| 165 |
+
if backend == "ipex" and task != "text-generation"
|
| 166 |
+
else _MIN_OPTIMUM_VERSION
|
| 167 |
+
)
|
| 168 |
+
if is_optimum_intel_version("<", min_optimum_version):
|
| 169 |
+
raise ImportError(
|
| 170 |
+
f"Backend: {backend} requires optimum-intel>="
|
| 171 |
+
f"{min_optimum_version}. You can install it with pip: "
|
| 172 |
+
"`pip install --upgrade --upgrade-strategy eager "
|
| 173 |
+
f"`optimum[{backend}]`."
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
if backend == "openvino":
|
| 177 |
+
if not is_openvino_available():
|
| 178 |
+
raise ImportError(err_msg)
|
| 179 |
+
|
| 180 |
+
from optimum.intel import ( # type: ignore[import]
|
| 181 |
+
OVModelForCausalLM,
|
| 182 |
+
OVModelForSeq2SeqLM,
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
model_cls = (
|
| 186 |
+
OVModelForCausalLM
|
| 187 |
+
if task == "text-generation"
|
| 188 |
+
else OVModelForSeq2SeqLM
|
| 189 |
+
)
|
| 190 |
+
else:
|
| 191 |
+
if not is_ipex_available():
|
| 192 |
+
raise ImportError(err_msg)
|
| 193 |
+
|
| 194 |
+
if task == "text-generation":
|
| 195 |
+
from optimum.intel import (
|
| 196 |
+
IPEXModelForCausalLM, # type: ignore[import]
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
model_cls = IPEXModelForCausalLM
|
| 200 |
+
else:
|
| 201 |
+
from optimum.intel import (
|
| 202 |
+
IPEXModelForSeq2SeqLM, # type: ignore[import]
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
model_cls = IPEXModelForSeq2SeqLM
|
| 206 |
+
|
| 207 |
+
else:
|
| 208 |
+
model_cls = (
|
| 209 |
+
AutoModelForCausalLM
|
| 210 |
+
if task == "text-generation"
|
| 211 |
+
else AutoModelForSeq2SeqLM
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
model = model_cls.from_pretrained(model_id, **_model_kwargs)
|
| 215 |
+
model=torch.compile(model,mode="max-autotune")
|
| 216 |
+
|
| 217 |
+
if tokenizer.pad_token is None:
|
| 218 |
+
if model.config.pad_token_id is not None:
|
| 219 |
+
tokenizer.pad_token_id = model.config.pad_token_id
|
| 220 |
+
elif model.config.eos_token_id is not None and isinstance(
|
| 221 |
+
model.config.eos_token_id, int
|
| 222 |
+
):
|
| 223 |
+
tokenizer.pad_token_id = model.config.eos_token_id
|
| 224 |
+
elif tokenizer.eos_token_id is not None:
|
| 225 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 226 |
+
else:
|
| 227 |
+
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
| 228 |
+
|
| 229 |
+
if (
|
| 230 |
+
(
|
| 231 |
+
getattr(model, "is_loaded_in_4bit", False)
|
| 232 |
+
or getattr(model, "is_loaded_in_8bit", False)
|
| 233 |
+
)
|
| 234 |
+
and device is not None
|
| 235 |
+
and backend == "default"
|
| 236 |
+
):
|
| 237 |
+
logger.warning(
|
| 238 |
+
f"Setting the `device` argument to None from {device} to avoid "
|
| 239 |
+
"the error caused by attempting to move the model that was already "
|
| 240 |
+
"loaded on the GPU using the Accelerate module to the same or "
|
| 241 |
+
"another device."
|
| 242 |
+
)
|
| 243 |
+
device = None
|
| 244 |
+
|
| 245 |
+
if (
|
| 246 |
+
device is not None
|
| 247 |
+
and importlib.util.find_spec("torch") is not None
|
| 248 |
+
and backend == "default"
|
| 249 |
+
):
|
| 250 |
+
import torch
|
| 251 |
+
|
| 252 |
+
cuda_device_count = torch.cuda.device_count()
|
| 253 |
+
if device < -1 or (device >= cuda_device_count):
|
| 254 |
+
raise ValueError(
|
| 255 |
+
f"Got device=={device}, "
|
| 256 |
+
f"device is required to be within [-1, {cuda_device_count})"
|
| 257 |
+
)
|
| 258 |
+
if device_map is not None and device < 0:
|
| 259 |
+
device = None
|
| 260 |
+
if device is not None and device < 0 and cuda_device_count > 0:
|
| 261 |
+
logger.warning(
|
| 262 |
+
"Device has %d GPUs available. "
|
| 263 |
+
"Provide device={deviceId} to `from_model_id` to use available"
|
| 264 |
+
"GPUs for execution. deviceId is -1 (default) for CPU and "
|
| 265 |
+
"can be a positive integer associated with CUDA device id.",
|
| 266 |
+
cuda_device_count,
|
| 267 |
+
)
|
| 268 |
+
if device is not None and device_map is not None and backend == "openvino":
|
| 269 |
+
logger.warning("Please set device for OpenVINO through: `model_kwargs`")
|
| 270 |
+
if "trust_remote_code" in _model_kwargs:
|
| 271 |
+
_model_kwargs = {
|
| 272 |
+
k: v for k, v in _model_kwargs.items() if k != "trust_remote_code"
|
| 273 |
+
}
|
| 274 |
+
_pipeline_kwargs = pipeline_kwargs or {}
|
| 275 |
+
pipeline = hf_pipeline(
|
| 276 |
+
task=task,
|
| 277 |
+
model=model,
|
| 278 |
+
tokenizer=tokenizer,
|
| 279 |
+
device=device,
|
| 280 |
+
batch_size=batch_size,
|
| 281 |
+
model_kwargs=_model_kwargs,
|
| 282 |
+
**_pipeline_kwargs,
|
| 283 |
+
)
|
| 284 |
+
if pipeline.task not in VALID_TASKS:
|
| 285 |
+
raise ValueError(
|
| 286 |
+
f"Got invalid task {pipeline.task}, "
|
| 287 |
+
f"currently only {VALID_TASKS} are supported"
|
| 288 |
+
)
|
| 289 |
+
return cls(
|
| 290 |
+
pipeline=pipeline,
|
| 291 |
+
model_id=model_id,
|
| 292 |
+
model_kwargs=_model_kwargs,
|
| 293 |
+
pipeline_kwargs=_pipeline_kwargs,
|
| 294 |
+
batch_size=batch_size,
|
| 295 |
+
**kwargs,
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
@property
|
| 299 |
+
def _identifying_params(self) -> Mapping[str, Any]:
|
| 300 |
+
"""Get the identifying parameters."""
|
| 301 |
+
return {
|
| 302 |
+
"model_id": self.model_id,
|
| 303 |
+
"model_kwargs": self.model_kwargs,
|
| 304 |
+
"pipeline_kwargs": self.pipeline_kwargs,
|
| 305 |
+
}
|
| 306 |
+
|
| 307 |
+
@property
|
| 308 |
+
def _llm_type(self) -> str:
|
| 309 |
+
return "huggingface_pipeline"
|
| 310 |
+
|
| 311 |
+
def _generate(
|
| 312 |
+
self,
|
| 313 |
+
prompts: List[str],
|
| 314 |
+
stop: Optional[List[str]] = None,
|
| 315 |
+
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
| 316 |
+
**kwargs: Any,
|
| 317 |
+
) -> LLMResult:
|
| 318 |
+
# List to hold all results
|
| 319 |
+
text_generations: List[str] = []
|
| 320 |
+
pipeline_kwargs = kwargs.get("pipeline_kwargs", {})
|
| 321 |
+
skip_prompt = kwargs.get("skip_prompt", False)
|
| 322 |
+
|
| 323 |
+
for i in range(0, len(prompts), self.batch_size):
|
| 324 |
+
batch_prompts = prompts[i : i + self.batch_size]
|
| 325 |
+
|
| 326 |
+
# Process batch of prompts
|
| 327 |
+
responses = self.pipeline(
|
| 328 |
+
batch_prompts,
|
| 329 |
+
**pipeline_kwargs,
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
# Process each response in the batch
|
| 333 |
+
for j, response in enumerate(responses):
|
| 334 |
+
if isinstance(response, list):
|
| 335 |
+
# if model returns multiple generations, pick the top one
|
| 336 |
+
response = response[0]
|
| 337 |
+
|
| 338 |
+
if self.pipeline.task == "text-generation":
|
| 339 |
+
text = response["generated_text"]
|
| 340 |
+
elif self.pipeline.task == "text2text-generation":
|
| 341 |
+
text = response["generated_text"]
|
| 342 |
+
elif self.pipeline.task == "summarization":
|
| 343 |
+
text = response["summary_text"]
|
| 344 |
+
elif self.pipeline.task in "translation":
|
| 345 |
+
text = response["translation_text"]
|
| 346 |
+
else:
|
| 347 |
+
raise ValueError(
|
| 348 |
+
f"Got invalid task {self.pipeline.task}, "
|
| 349 |
+
f"currently only {VALID_TASKS} are supported"
|
| 350 |
+
)
|
| 351 |
+
if skip_prompt:
|
| 352 |
+
text = text[len(batch_prompts[j]) :]
|
| 353 |
+
# Append the processed text to results
|
| 354 |
+
text_generations.append(text)
|
| 355 |
+
|
| 356 |
+
return LLMResult(
|
| 357 |
+
generations=[[Generation(text=text)] for text in text_generations]
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
def _stream(
|
| 361 |
+
self,
|
| 362 |
+
prompt: str,
|
| 363 |
+
stop: Optional[List[str]] = None,
|
| 364 |
+
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
| 365 |
+
**kwargs: Any,
|
| 366 |
+
) -> Iterator[GenerationChunk]:
|
| 367 |
+
from threading import Thread
|
| 368 |
+
|
| 369 |
+
import torch
|
| 370 |
+
from transformers import (
|
| 371 |
+
StoppingCriteria,
|
| 372 |
+
StoppingCriteriaList,
|
| 373 |
+
TextIteratorStreamer,
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
pipeline_kwargs = kwargs.get("pipeline_kwargs", {})
|
| 377 |
+
skip_prompt = kwargs.get("skip_prompt", True)
|
| 378 |
+
|
| 379 |
+
if stop is not None:
|
| 380 |
+
stop = self.pipeline.tokenizer.convert_tokens_to_ids(stop)
|
| 381 |
+
stopping_ids_list = stop or []
|
| 382 |
+
|
| 383 |
+
class StopOnTokens(StoppingCriteria):
|
| 384 |
+
def __call__(
|
| 385 |
+
self,
|
| 386 |
+
input_ids: torch.LongTensor,
|
| 387 |
+
scores: torch.FloatTensor,
|
| 388 |
+
**kwargs: Any,
|
| 389 |
+
) -> bool:
|
| 390 |
+
for stop_id in stopping_ids_list:
|
| 391 |
+
if input_ids[0][-1] == stop_id:
|
| 392 |
+
return True
|
| 393 |
+
return False
|
| 394 |
+
|
| 395 |
+
stopping_criteria = StoppingCriteriaList([StopOnTokens()])
|
| 396 |
+
|
| 397 |
+
streamer = TextIteratorStreamer(
|
| 398 |
+
self.pipeline.tokenizer,
|
| 399 |
+
timeout=60.0,
|
| 400 |
+
skip_prompt=skip_prompt,
|
| 401 |
+
skip_special_tokens=True,
|
| 402 |
+
)
|
| 403 |
+
generation_kwargs = dict(
|
| 404 |
+
text_inputs=prompt,
|
| 405 |
+
streamer=streamer,
|
| 406 |
+
stopping_criteria=stopping_criteria,
|
| 407 |
+
**pipeline_kwargs,
|
| 408 |
+
)
|
| 409 |
+
t1 = Thread(target=self.pipeline, kwargs=generation_kwargs)
|
| 410 |
+
t1.start()
|
| 411 |
+
|
| 412 |
+
for char in streamer:
|
| 413 |
+
chunk = GenerationChunk(text=char)
|
| 414 |
+
if run_manager:
|
| 415 |
+
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
| 416 |
+
|
| 417 |
+
yield chunk
|
| 418 |
|
| 419 |
from langchain_core.prompts.chat import ChatPromptTemplate, MessagesPlaceholder
|
| 420 |
system = '''Respond to the human as helpfully and accurately as possible. You have access to the following tools:
|
|
|
|
| 478 |
from langchain_core.runnables import run_in_executor
|
| 479 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 480 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 481 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 482 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 483 |
#from transformers import pipeline,AutoModelForCausalLM as M,AutoTokenizer as T
|
| 484 |
#m=M.from_pretrained("peterpeter8585/syai4.3")
|
| 485 |
#t=T.from_pretrained("peterpeter8585/syai4.3")
|