Spaces:
Runtime error
Runtime error
File size: 15,003 Bytes
8df6da4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 |
<!doctype html>
<title>v86: sectorc</title>
<script src="../build/libv86.js"></script>
<script>
"use strict";
window.onload = function()
{
const libc = `int tmp1;
int tmp2;
void shutdown()
{
/* Shutdown via APM: coded in asm machine code directly */
// Check for APM
// | mov ah,0x53; mov al,0x00; xor bx,bx; int 0x15; jc error
asm 180; asm 83; asm 176; asm 0; asm 49; asm 219;
asm 205; asm 21; asm 114; asm 55;
// Disconnect from any APM interface
// | mov ah,0x53; mov al,0x04; xor bx,bx; int 0x15
// | jc maybe_error; jmp no_error
asm 180; asm 83; asm 176; asm 4; asm 49; asm 219;
asm 205; asm 21; asm 114; asm 2; asm 235; asm 5;
// Label: maybe_error
// | cmp ah,0x03; jne error
asm 128; asm 252; asm 3; asm 117; asm 38;
// Label: no_error
// Connect to APM interface
// | mov ah,0x53; mov al,0x01; xor bx,bx; int 0x15; jc error
asm 180; asm 83; asm 176; asm 1; asm 49; asm 219;
asm 205; asm 21; asm 114; asm 28;
// Enable power management for all devices
// | mov ah,0x53; mov al,0x08; mov bx,0x0001; mov cx,0x0001
// | int 0x15; jc error
asm 180; asm 83; asm 176; asm 8;
asm 187; asm 1; asm 0; asm 185; asm 1; asm 0;
asm 205; asm 21; asm 114; asm 14;
// Set the power state for all devices
// | mov ah,0x53; mov al,0x7; mov bx,0x0001; mov cx,0x0003
// | int 0x15; jc error
asm 180; asm 83; asm 176; asm 7;
asm 187; asm 1; asm 0; asm 185; asm 3; asm 0;
asm 205; asm 21; asm 114; asm 0;
// Label: error
// | hlt; jmp error
asm 244; asm 235; asm 253;
}
int store_far_seg;
int store_far_off;
int store_far_val;
void store_far()
{
// mov es, store_far_seg
store_far_seg = store_far_seg;
asm 142; asm 192;
// mov si, store_far_off
store_far_off = store_far_off;
asm 137; asm 198;
// mov es:[si], store_far_val
store_far_val = store_far_val;
asm 38; asm 137; asm 4;
}
int div10_unsigned_n;
int div10_unsigned_q;
int div10_unsigned_r;
void div10_unsigned()
{
/* Taken from "Hacker's Delight", modified to "fit your screen" */
tmp1 = ( div10_unsigned_n >> 1 ) & 32767; // unsigned
tmp2 = ( div10_unsigned_n >> 2 ) & 16383; // unsigned
div10_unsigned_q = tmp1 + tmp2;
tmp1 = ( div10_unsigned_q >> 4 ) & 4095; // unsigned
div10_unsigned_q = div10_unsigned_q + tmp1;
tmp1 = ( div10_unsigned_q >> 8 ) & 255; // unsigned
div10_unsigned_q = div10_unsigned_q + tmp1;
div10_unsigned_q = ( div10_unsigned_q >> 3 ) & 8191; // unsigned
div10_unsigned_r = div10_unsigned_n
- ( ( div10_unsigned_q << 3 ) + ( div10_unsigned_q << 1 ) );
if( div10_unsigned_r > 9 ){
div10_unsigned_q = div10_unsigned_q + 1;
div10_unsigned_r = div10_unsigned_r - 10;
}
}
int print_ch;
void print_char()
{
/* Implement print char via serial port bios function accessed via int 0x14 */
print_ch = print_ch; // mov ax,[&print_ch]
asm 180; asm 1; // mov ah,1
asm 186; asm 0; asm 0 ; // mov dx,0
asm 205; asm 20; // int 0x14
}
// uses 'print_ch'
void print_newline()
{
print_ch = 10;
print_char();
}
int print_num; // input
int print_u16_bufptr;
int print_u16_cur;
void print_u16()
{
print_u16_bufptr = 30000; // buffer for ascii digits
if( print_num == 0 ){
print_ch = 48;
print_char();
}
print_u16_cur = print_num;
while( print_u16_cur != 0 ){
div10_unsigned_n = print_u16_cur;
div10_unsigned();
*(int*) print_u16_bufptr = div10_unsigned_r;
print_u16_bufptr = print_u16_bufptr + 1;
print_u16_cur = div10_unsigned_q;
}
while( print_u16_bufptr != 30000 ){ // emit them in reverse over
print_u16_bufptr = print_u16_bufptr - 1;
print_ch = ( *(int*) print_u16_bufptr & 255 ) + 48;
print_char();
}
}
// uses 'print_num' and 'print_ch'
void print_i16()
{
if( print_num < 0 ){
print_ch = 45; print_char(); // '-'
print_num = 0 - print_num;
}
print_u16();
}
void vga_init()
{
// mov ah,0; mov al,0x13; int 0x10
asm 180; asm 0; asm 176; asm 19; asm 205; asm 16;
}
void vga_clear()
{
// push di; xor di,di; mov bx,0xa000; mov es,bx;
// mov cx,0x7d00; xor ax,ax; rep stos; pop di
asm 87 ; asm 49 ; asm 255; asm 187; asm 0; asm 160;
asm 142; asm 195; asm 185; asm 0; asm 125; asm 49;
asm 192; asm 243; asm 171; asm 95;
}
int pixel_x;
int pixel_y;
void vga_set_pixel()
{
// need to multiply pixel_y by 320 = 256 + 64
// use 'tmp1' for pixel index
tmp1 = ( ( pixel_y << 8 ) + ( pixel_y << 6 ) ) + pixel_x;
// store to 0xa000:pixel_idx
// mov bx,0xa000; mov es,bx; mov bx,ax; mov BYTE PTR es:[bx],0xf
tmp1 = tmp1;
asm 187; asm 0; asm 160; asm 142; asm 195;
asm 137; asm 195; asm 38; asm 198; asm 7; asm 15;
}
int port_num;
int port_val;
void port_inb()
{
dx = port_num;
// mov dx,WORD PTR [0x464]; in al,dx
asm 139; asm 22; asm 160; asm 4; asm 236;
// mov WORD PTR [0x464],ax
asm 137; asm 6; asm 100; asm 4;
port_val = ax;
}
void port_inw()
{
// mov dx,WORD PTR [0x464]; in ax,dx
dx = port_num;
asm 139; asm 22; asm 160; asm 4; asm 237;
// mov WORD PTR [0x464],ax
asm 137; asm 6; asm 100; asm 4;
port_val = ax;
}
void port_outb()
{
dx = port_num;
ax = port_val;
// mov dx,WORD PTR [0x464]
asm 139; asm 22; asm 160; asm 4;
// mov ax,WORD PTR [0x464]
asm 139; asm 6; asm 100; asm 4;
// outb dx,al
asm 238;
}
void port_outw()
{
dx = port_num;
ax = port_val;
// mov dx,WORD PTR [0x464]
asm 139; asm 22; asm 160; asm 4;
// mov ax,WORD PTR [0x464]
asm 139; asm 6; asm 100; asm 4;
// outb dx,al
asm 239;
}
void dump_code_segment_and_shutdown()
{
/* NOTE: This code is in a different segment from data, and our compiled pointer accesses
do not leave the data segment, so we need a little machine code to grab data from the
code segment and stash it in a variable for C */
i = 0;
while( i < 8192 ){ /* Just assuming 8K is enough.. might not be true */
// (put "i" in ax); mov si,ax; mov ax,cs:[si]; mov [&a],ax
i = i; asm 137; asm 198; asm 46; asm 139; asm 4; asm 137; asm 133; asm 98; asm 0;
print_ch = a;
print_char();
i = i + 1;
}
shutdown();
}
`;
const start = `void _start()
{
main();
shutdown();
}
`;
const hello = `int buf;
int ptr;
int len;
void vga_write()
{
/* Text vga is located at b800:0000 */
store_far_seg = 47104; // segment: 0xb800
store_far_off = idx << 1;
store_far_val = ( 15 << 8 ) | ( ch & 255 ); // white fg and black bg
store_far();
}
int x_off;
int y_off;
void vga_write_ch()
{
if( ch != 10 ){
idx = y_off + x_off;
vga_write();
x_off = x_off + 1;
}
if( ( ch == 10 ) | ( x_off == 80 ) ){
y_off = y_off + 80;
x_off = 0;
}
}
int idx;
void vga_clear()
{
idx = 0;
while( idx < 2000 ){ // 80x25
ch = 32; // char: ' '
vga_write();
idx = idx + 1;
}
pos = 0;
}
void main()
{
// dump_code_segment_and_shutdown();
vga_clear();
ch = 72; vga_write_ch();
ch = 101; vga_write_ch();
ch = 108; vga_write_ch();
ch = 108; vga_write_ch();
ch = 111; vga_write_ch();
ch = 10; vga_write_ch();
ch = 32; vga_write_ch();
ch = 102; vga_write_ch();
ch = 114; vga_write_ch();
ch = 111; vga_write_ch();
ch = 109; vga_write_ch();
ch = 10; vga_write_ch();
ch = 32; vga_write_ch();
ch = 32; vga_write_ch();
ch = 83; vga_write_ch();
ch = 101; vga_write_ch();
ch = 99; vga_write_ch();
ch = 116; vga_write_ch();
ch = 111; vga_write_ch();
ch = 114; vga_write_ch();
ch = 67; vga_write_ch();
ch = 10; vga_write_ch();
ch = 32; vga_write_ch();
ch = 32; vga_write_ch();
ch = 32; vga_write_ch();
i = 0;
while( i < 10 ){
ch = 33; vga_write_ch();
i = i + 1;
}
while( 1 ){ }
}
`;
const sinwave = `/* A Sine-wave Animation
Math time:
---------------------------
Along the range [0, pi] we can approximate sin(x) very crudely with a 2nd order quadratic
That is: y = a * x^2 + b * x + c
Three unknowns need three constraints, so picking the easy ones:
x = 0, y = 0
x = pi/2, y = 1
x = pi, y = 0
Solving the linear system:
| 0 0 1 | | a | | 0 |
| pi^2/4 pi/2 1 | * | b | = | 1 |
| pi^2 pi 1 | | c | | 0 |
We get:
a = -4 / pi^2
b = 4 / pi
c = 0
And:
y = 4x(pi - x)/(pi^2)
Engineering time:
---------------------------
We are working with a 320x200 vga. We also don't have floating-point math. So, the
goal here is to do all the math in integer screen coordinates and accept some pixel
approximation error.
First, we want to center the wave in the middle, y = 100
We'll let y vary +-50 pixels to remain on the screen, so [50, 150]
We want to show an entire cycle (2pi) on the x-axis, so *50 gives us [0, ~314]
This implies that the "x-origin" is at x = 157
Substituting in everything, we get:
y ~= 100 + x*(157 - x)/125
The division by 125 is problematic as we don't have division. But luckily 128 is close enough.
Thus, we get:
y ~= 100 + (x*(157 - x)) >> 7
The rest is just adjusting for the [0, pi] range reduction by negating the approximation
along [pi, 2pi]
NOTE: the screen coordinate system is upside-down and I don't bother to correct for that.
it simply means that the animation starts at a +pi phase offset
*/
int y;
int x;
int x_0;
void sin_positive_approx()
{
y = ( x_0 * ( 157 - x_0 ) ) >> 7;
}
void sin()
{
x_0 = x;
while( x_0 > 314 ){
x_0 = x_0 - 314;
}
if( x_0 <= 157 ){
sin_positive_approx();
}
if( x_0 > 157 ){
x_0 = x_0 - 157;
sin_positive_approx();
y = 0 - y;
}
y = 100 + y;
}
int offset;
int x_end;
void draw_sine_wave()
{
x = offset;
x_end = x + 314;
while( x <= x_end ){
sin();
pixel_x = x - offset;
pixel_y = y;
vga_set_pixel();
x = x + 1;
}
}
int v_1;
int v_2;
void delay()
{
v_1 = 0;
while( v_1 < 50 ){
v_2 = 0;
while( v_2 < 10000 ){
v_2 = v_2 + 1;
}
v_1 = v_1 + 1;
}
}
void main()
{
vga_init();
offset = 0;
while( 1 ){
vga_clear();
draw_sine_wave();
delay();
offset = offset + 1;
if( offset >= 314 ){ // mod the value to avoid 2^16 integer overflow
offset = offset - 314;
}
}
}
`;
const twinkle = `/* References:
http://muruganad.com/8086/8086-assembly-language-program-to-play-sound-using-pc-speaker.html
https://en.wikipedia.org/wiki/Twinkle,_Twinkle,_Little_Star
*/
void delay_1()
{
v_1 = 0;
while( v_1 < 4000 ){
v_2 = 0;
while( v_2 < 10000 ){
v_2 = v_2 + 1;
}
v_1 = v_1 + 1;
}
}
void delay_2()
{
v_1 = 0;
while( v_1 < 300 ){
v_2 = 0;
while( v_2 < 10000 ){
v_2 = v_2 + 1;
}
v_1 = v_1 + 1;
}
}
void audio_init()
{
// Configure PIC2 mode
port_num = 67;
port_val = 182;
port_outb();
}
void audio_enable()
{
// Set bits 0 and 1 to enable
port_num = 97;
port_inb();
port_val = port_val | 3;
port_outb();
}
void audio_disable()
{
// Clear bits 0 and 1 to enable
port_num = 97;
port_inb();
port_val = port_val & 65532;
port_outb();
}
int audio_freq;
void audio_freq_set()
{
// Set frequency
port_num = 66;
port_val = audio_freq & 255;
port_outb();
port_val = ( audio_freq >> 8 ) & 255;
port_outb();
}
int note;
void play_quarter_note()
{
audio_freq = note;
audio_freq_set();
audio_enable();
delay_1();
audio_disable();
delay_2();
}
void play_half_note()
{
audio_freq = note;
audio_freq_set();
audio_enable();
delay_1();
delay_1();
audio_disable();
delay_2();
}
void play_section_1()
{
note = C; play_quarter_note();
note = C; play_quarter_note();
note = G; play_quarter_note();
note = G; play_quarter_note();
note = A; play_quarter_note();
note = A; play_quarter_note();
note = G; play_half_note();
note = F; play_quarter_note();
note = F; play_quarter_note();
note = E; play_quarter_note();
note = E; play_quarter_note();
note = D; play_quarter_note();
note = D; play_quarter_note();
note = C; play_half_note();
}
void play_section_2()
{
note = G; play_quarter_note();
note = G; play_quarter_note();
note = F; play_quarter_note();
note = F; play_quarter_note();
note = E; play_quarter_note();
note = E; play_quarter_note();
note = D; play_half_note();
note = G; play_quarter_note();
note = G; play_quarter_note();
note = F; play_quarter_note();
note = F; play_quarter_note();
note = E; play_quarter_note();
note = E; play_quarter_note();
note = D; play_half_note();
}
void main()
{
audio_init();
audio_enable();
C = 4560;
D = 4063;
E = 3619;
F = 3416;
G = 3043;
A = 2711;
play_section_1();
play_section_2();
play_section_1();
audio_disable();
}
`;
document.getElementById("source").onkeydown = function(e)
{
if(e.which == 13 && e.ctrlKey)
{
document.getElementById("run").onclick();
}
};
document.getElementById("source").textContent = sinwave;
document.getElementById("source").onkeydown = function(e)
{
if(e.which == 13 && e.ctrlKey)
{
document.getElementById("run").onclick();
}
};
document.getElementById("examples").onchange = function()
{
document.getElementById("source").textContent = { sinwave, twinkle, hello }[this.value];
};
let emulator;
document.getElementById("run").onclick = run;
function run()
{
emulator && emulator.destroy();
emulator = window.emulator = new V86({
wasm_path: "../build/v86.wasm",
memory_size: 32 * 1024 * 1024,
vga_memory_size: 2 * 1024 * 1024,
screen_container: document.getElementById("screen_container"),
bios: { url: "../bios/seabios.bin" },
vga_bios: { url: "../bios/vgabios.bin" },
fda: { url: "../images/sectorc.bin" },
autostart: true,
});
emulator.add_listener("emulator-ready", () => {
const source = libc + document.getElementById("source").value + start;
emulator.serial0_send(source);
});
document.getElementById("run").onclick = stop;
document.getElementById("run").textContent = "stop";
};
function stop()
{
emulator && emulator.destroy();
document.getElementById("run").onclick = run;
document.getElementById("run").textContent = "run (ctrl-enter)";
}
}
</script>
<br>
<textarea id=source rows=20 cols=80>
</textarea>
<br>
<select id=examples>
<option value=sinwave>Sine wave</option>
<option value=hello>Hello</option>
<option value=twinkle>Twinkle (audio)</option>
</select>
<button id=run>run (ctrl-enter)</button>
<br>
<hr>
<div id="screen_container">
<div style="white-space: pre; font: 14px monospace; line-height: 14px"></div>
<canvas style="display: none"></canvas>
</div>
<hr>
<a href="https://github.com/xorvoid/sectorc">sectorc</a> on <a href="/v86/">v86</a>
|