File size: 25,915 Bytes
e3bfbea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
"""
Merged Streamlit App: IND Assistant and Submission Assessment

This app combines the functionality of the IND Assistant (chat-based Q&A)
and the Submission Assessment (checklist-based analysis) into a single
Streamlit interface.
"""

import os
import json
import tempfile
from zipfile import ZipFile
import streamlit as st
from llama_parse import LlamaParse
import pickle
import hashlib
from typing import List
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Qdrant
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain_openai.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.schema.runnable import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from operator import itemgetter
import nest_asyncio
from langchain.schema import Document
import boto3  # Import boto3 for S3 interaction
import requests
from io import BytesIO

# Prevent Streamlit from auto-reloading on file changes
os.environ["STREAMLIT_WATCHER_TYPE"] = "none"

# Apply nest_asyncio for async operations
nest_asyncio.apply()

# Set environment variables for API keys
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")  # OpenAI API Key
os.environ["LLAMA_CLOUD_API_KEY"] = os.getenv("LLAMA_CLOUD_API_KEY")  # Llama Cloud API Key
os.environ["AWS_ACCESS_KEY_ID"] = os.getenv("AWS_ACCESS_KEY_ID")
os.environ["AWS_SECRET_ACCESS_KEY"] = os.getenv("AWS_SECRET_ACCESS_KEY")
os.environ["AWS_REGION"] = os.getenv("AWS_REGION")


# File paths for IND Assistant
PDF_FILE = "IND-312.pdf"
PREPROCESSED_FILE = "preprocessed_docs.json"

# --- IND Assistant Functions ---

# Load and parse PDF (only for preprocessing)
def load_pdf(pdf_path: str) -> List[Document]:
    """Loads a PDF, processes it with LlamaParse, and splits it into LangChain documents."""
    from llama_parse import LlamaParse  # Import only if needed

    file_size = os.path.getsize(pdf_path) / (1024 * 1024)  # Size in MB
    workers = 2 if file_size > 2 else 1  # Use 2 workers for PDFs >2MB

    parser = LlamaParse(
        api_key=os.environ["LLAMA_CLOUD_API_KEY"],
        result_type="markdown",
        num_workers=workers,
        verbose=True
    )

    # Parse PDF to documents
    llama_documents = parser.load_data(pdf_path)

    # Convert to LangChain documents
    documents = [
        Document(
            page_content=doc.text,
            metadata={"source": pdf_path, "page": doc.metadata.get("page_number", 0)}
        ) for doc in llama_documents
    ]

    # Split documents into chunks
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=500,
        chunk_overlap=50,
        length_function=len,
    )

    return text_splitter.split_documents(documents)

# Preprocess the PDF and save to JSON (Only if it doesn't exist)
def preprocess_pdf(pdf_path: str, output_path: str = PREPROCESSED_FILE):
    """Preprocess PDF only if the output file does not exist."""
    if os.path.exists(output_path):
        print(f"Preprocessed data already exists at {output_path}. Skipping PDF processing.")
        return  # Skip processing if file already exists

    print("Processing PDF for the first time...")

    documents = load_pdf(pdf_path)  # Load and process the PDF

    # Convert documents to JSON format
    json_data = [{"content": doc.page_content, "metadata": doc.metadata} for doc in documents]

    # Save to file
    with open(output_path, "w", encoding="utf-8") as f:
        json.dump(json_data, f, indent=4)

    print(f"Preprocessed PDF saved to {output_path}")

# Load preprocessed data instead of parsing PDF
def load_preprocessed_data(json_path: str) -> List[Document]:
    """Load preprocessed data from JSON."""
    if not os.path.exists(json_path):
        raise FileNotFoundError(f"Preprocessed file {json_path} not found. Run preprocessing first.")

    with open(json_path, "r", encoding="utf-8") as f:
        json_data = json.load(f)

    return [Document(page_content=d["content"], metadata=d["metadata"]) for d in json_data]

# Initialize vector store from preprocessed data
def init_vector_store(documents: List[Document]):
    """Initialize a vector store using HuggingFace embeddings and Qdrant."""
    if not documents or not all(doc.page_content.strip() for doc in documents):
        raise ValueError("No valid documents found for vector storage")

    # Initialize embedding model
    embedding_model = HuggingFaceBgeEmbeddings(
        model_name="BAAI/bge-base-en-v1.5",
        encode_kwargs={'normalize_embeddings': True}
    )

    return Qdrant.from_documents(
        documents=documents,
        embedding=embedding_model,
        location=":memory:",
        collection_name="ind312_docs",
        force_recreate=False
    )

# Create RAG chain for retrieval-based Q&A
def create_rag_chain(retriever):
    """Create a retrieval-augmented generation (RAG) chain for answering questions."""
    # Load prompt template
    with open("template.md") as f:
        template_content = f.read()

    prompt = ChatPromptTemplate.from_template("""
    You are an FDA regulatory expert. Use this structure for checklists:
    {template}

    Context from IND-312:
    {context}

    Question: {question}

    Answer in Markdown with checkboxes (- [ ]). If unsure, say "I can only answer IND related questions.".
    """)

    return (
        {
            "context": itemgetter("question") | retriever,
            "question": itemgetter("question"),
            "template": lambda _: template_content  # Inject template content
        }
        | RunnablePassthrough.assign(context=itemgetter("context"))
        | {"response": prompt | ChatOpenAI(model="gpt-4") | StrOutputParser()}
    )

# Caching function to prevent redundant RAG processing
@st.cache_data
def cached_response(question: str):
    """Retrieve cached response if available, otherwise compute response."""
    if "rag_chain" in st.session_state:
        return st.session_state.rag_chain.invoke({"question": question})["response"]
    else:
        st.error("RAG chain not initialized. Please initialize the IND Assistant first.")
        return ""

# --- Submission Assessment Functions ---

# Access API key from environment variable
LLAMA_CLOUD_API_KEY = os.environ.get("LLAMA_CLOUD_API_KEY")

# Check if the API key is available
if not LLAMA_CLOUD_API_KEY:
    st.error("LLAMA_CLOUD_API_KEY not found in environment variables. Please set it in your Hugging Face Space secrets.")
    st.stop()

# Sample Checklist Configuration (this should be adjusted to your actual IND requirements)
IND_CHECKLIST = {
    "Form FDA-1571": {
        "file_patterns": ["1571", "fda-1571"],
        "required_keywords": [
            # Sponsor Information
            "Name of Sponsor",
            "Date of Submission",
            "Address 1",
            "Sponsor Telephone Number",
            # Drug Information
            "Name of Drug",
            "IND Type",
            "Proposed Indication for Use",
            # Regulatory Information
            "Phase of Clinical Investigation",
            "Serial Number",
            # Application Contents
            "Table of Contents",
            "Investigator's Brochure",
            "Study protocol",
            "Investigator data",
            "Facilities data",
            "Institutional Review Board data",
            "Environmental assessment",
            "Pharmacology and Toxicology",
            # Signatures and Certifications
            #"Person Responsible for Clinical Investigation Monitoring",
            #"Person Responsible for Reviewing Safety Information",
            "Sponsor or Sponsor's Authorized Representative First Name",
            "Sponsor or Sponsor's Authorized Representative Last Name",
            "Sponsor or Sponsor's Authorized Representative Title",
            "Sponsor or Sponsor's Authorized Representative Telephone Number",
            "Date of Sponsor's Signature"
        ]
    },
    "Table of Contents": {
        "file_patterns": ["toc", "table of contents"],
        "required_keywords": ["table of contents", "sections", "appendices"]
    },
    "Introductory Statement": {
        "file_patterns": ["intro", "introductory", "general plan"],
        "required_keywords": ["introduction", "investigational plan", "objectives"]
    },
    "Investigator Brochure": {
        "file_patterns": ["brochure", "ib"],
        "required_keywords": ["pharmacology", "toxicology", "clinical data"]
    },
    "Clinical Protocol": {
        "file_patterns": ["clinical", "protocol"],
        "required_keywords": ["study design", "objectives", "patient population", "dosing regimen", "endpoints"]
    },
    "CMC Information": {
        "file_patterns": ["cmc", "chemistry", "manufacturing"],
        "required_keywords": ["manufacturing", "controls", "specifications", "stability"]
    },
    "Pharmacology and Toxicology": {
        "file_patterns": ["pharm", "tox", "pharmacology", "toxicology"],
        "required_keywords": ["pharmacology studies", "toxicology studies", "animal studies"]
    },
    "Previous Human Experience": {
        "file_patterns": ["human", "experience", "previous"],
        "required_keywords": ["previous studies", "human subjects", "clinical experience"]
    },
    "Additional Information": {
        "file_patterns": ["additional", "other", "supplemental"],
        "required_keywords": ["additional data", "supplementary information"]
    }
}


class ChecklistCrossReferenceAgent:
    """
    Agent that cross-references the pre-parsed submission package data
    against a predefined IND checklist.

    Input:
        submission_data: list of dicts representing each file with keys:
            - "filename": Filename of the document.
            - "file_type": e.g., "pdf" or "txt"
            - "content": Extracted text from the document.
            - "metadata": (Optional) Additional metadata.
        checklist: dict representing the IND checklist.
    Output:
        A mapping of checklist items to their verification status.
    """
    def __init__(self, checklist):
        self.checklist = checklist

    def run(self, submission_data):
        cross_reference_result = {}
        for document_name, config in self.checklist.items():
            file_patterns = config.get("file_patterns", [])
            required_keywords = config.get("required_keywords", [])
            matched_file = None
            
            # Attempt to find a matching file based on filename patterns.
            for file_info in submission_data:
                filename = file_info.get("filename", "").lower()
                if any(pattern.lower() in filename for pattern in file_patterns):
                    matched_file = file_info
                    break
            
            # Build the result per checklist item.
            if not matched_file:
                # File is completely missing.
                cross_reference_result[document_name] = {
                    "status": "missing",
                    "missing_fields": required_keywords
                }
            else:
                # File found, check if its content includes the required keywords.
                content = matched_file.get("content", "").lower()
                missing_fields = []
                for keyword in required_keywords:
                    if keyword.lower() not in content:
                        missing_fields.append(keyword)
                if missing_fields:
                    cross_reference_result[document_name] = {
                        "status": "incomplete",
                        "missing_fields": missing_fields
                    }
                else:
                    cross_reference_result[document_name] = {
                        "status": "present",
                        "missing_fields": []
                    }
        return cross_reference_result


class AssessmentRecommendationAgent:
    """
    Agent that analyzes the cross-reference data and produces an
    assessment report with recommendations.

    Input:
        cross_reference_result: dict mapping checklist items to their status.
    Output:
        A dict containing an overall compliance flag and detailed recommendations.
    """
    def run(self, cross_reference_result):
        recommendations = {}
        overall_compliant = True

        for doc, result in cross_reference_result.items():
            status = result.get("status")
            if status == "missing":
                recommendations[doc] = f"{doc} is missing. Please include the document."
                overall_compliant = False
            elif status == "incomplete":
                missing = ", ".join(result.get("missing_fields", []))
                recommendations[doc] = (f"{doc} is incomplete. Missing required fields: {missing}. "
                                        "Please update accordingly.")
                overall_compliant = False
            else:
                recommendations[doc] = f"{doc} is complete."
        assessment = {
            "overall_compliant": overall_compliant,
            "recommendations": recommendations
        }
        return assessment


class OutputFormatterAgent:
    """
    Agent that formats the assessment report into a user-friendly format.
    This example formats the output as Markdown.
    
    Input:
        assessment: dict output from AssessmentRecommendationAgent.
    Output:
        A formatted string report.
    """
    def run(self, assessment):
        overall = "Compliant" if assessment.get("overall_compliant") else "Non-Compliant"
        lines = []
        lines.append("# Submission Package Assessment Report")
        lines.append(f"**Overall Compliance:** {overall}\n")
        recommendations = assessment.get("recommendations", {})
        for doc, rec in recommendations.items():
            lines.append(f"### {doc}")
            # Format recommendations as bullet points
            if "incomplete" in rec.lower():
                missing_fields = rec.split("Missing required fields: ")[1].split(".")[0].split(", ")
                lines.append("- Status: Incomplete")
                lines.append("  - Missing Fields:")
                for field in missing_fields:
                    lines.append(f"    - {field}")
            else:
                lines.append(f"- Status: {rec}")
        return "\n".join(lines)


class SupervisorAgent:
    """
    Supervisor Agent to orchestrate the agent pipeline in a serial, chained flow:
    
      1. ChecklistCrossReferenceAgent
      2. AssessmentRecommendationAgent
      3. OutputFormatterAgent

    Input:
        submission_data: Pre-processed submission package data.
    Output:
        A final formatted report and completeness percentage.
    """
    def __init__(self, checklist):
        self.checklist_agent = ChecklistCrossReferenceAgent(checklist)
        self.assessment_agent = AssessmentRecommendationAgent()
        self.formatter_agent = OutputFormatterAgent()
        self.total_required_files = 9  # Total number of required files

    def run(self, submission_data):
        # Step 1: Cross-reference the submission data against the checklist
        cross_ref_result = self.checklist_agent.run(submission_data)
        # Step 2: Analyze the cross-reference result to produce assessment and recommendations
        assessment_report = self.assessment_agent.run(cross_ref_result)
        # Step 3: Calculate completeness percentage
        completeness_percentage = self.calculate_completeness(cross_ref_result)
        # Step 4: Format the assessment report for display
        formatted_report = self.formatter_agent.run(assessment_report)
        return formatted_report, completeness_percentage

    def calculate_completeness(self, cross_ref_result):
        """Calculate the completeness percentage of the submission package."""
        completed_files = 0
        for result in cross_ref_result.values():
            if result["status"] == "present":
                completed_files += 1
            elif result["status"] == "incomplete":
                completed_files += 0.5  # Consider incomplete files as half finished
        return (completed_files / self.total_required_files) * 100


# --- Helper Functions for ZIP Processing ---

def download_zip_from_s3(s3_url: str) -> BytesIO:
    """Downloads a ZIP file from S3 and returns it as a BytesIO object."""
    try:
        s3 = boto3.client(
            's3',
            aws_access_key_id=os.environ["AWS_ACCESS_KEY_ID"],
            aws_secret_access_key=os.environ["AWS_SECRET_ACCESS_KEY"],
            region_name=os.environ["AWS_REGION"]
        )

        # Parse S3 URL
        bucket_name = s3_url.split('/')[2]
        key = '/'.join(s3_url.split('/')[3:])

        # Download the file
        response = s3.get_object(Bucket=bucket_name, Key=key)
        zip_bytes = response['Body'].read()
        return BytesIO(zip_bytes)
    except Exception as e:
        st.error(f"Error downloading ZIP file from S3: {str(e)}")
        return None

def download_zip_from_url(url: str) -> BytesIO:
    """Downloads a ZIP file from a URL and returns it as a BytesIO object."""
    try:
        response = requests.get(url, stream=True)
        response.raise_for_status()  # Raise an exception for bad status codes
        return BytesIO(response.content)
    except requests.exceptions.RequestException as e:
        st.error(f"Error downloading ZIP file from URL: {str(e)}")
        return None

def process_uploaded_zip(zip_file: BytesIO) -> list:
    """
    Processes a ZIP file (from BytesIO), caches embeddings, and returns a list of file dictionaries.
    """
    submission_data = []

    with ZipFile(zip_file) as zip_ref:
        for filename in zip_ref.namelist():
            file_ext = os.path.splitext(filename)[1].lower()
            file_bytes = zip_ref.read(filename)
            content = ""

            # Generate a unique cache key based on the file content
            file_hash = hashlib.md5(file_bytes).hexdigest()
            cache_key = f"{filename}_{file_hash}"
            cache_file = f".cache/{cache_key}.pkl"  # Cache file path

            # Create the cache directory if it doesn't exist
            os.makedirs(".cache", exist_ok=True)

            if os.path.exists(cache_file):
                # Load from cache
                print(f"Loading {filename} from cache")
                try:
                    with open(cache_file, "rb") as f:
                        content = pickle.load(f)
                except Exception as e:
                    st.error(f"Error loading {filename} from cache: {str(e)}")
                    content = ""  # Or handle the error as appropriate
            else:
                # Process and cache
                print(f"Processing {filename} and caching")
                if file_ext == ".pdf":
                    with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
                        tmp.write(file_bytes)
                        tmp.flush()
                        tmp_path = tmp.name
                    file_size = os.path.getsize(tmp_path) / (1024 * 1024)
                    workers = 2 if file_size > 2 else 1
                    try:
                        parser = LlamaParse(
                            api_key=LLAMA_CLOUD_API_KEY,
                            result_type="markdown",
                            num_workers=workers,
                            verbose=True
                        )
                        llama_documents = parser.load_data(tmp_path)
                        content = "\n".join([doc.text for doc in llama_documents])
                    except Exception as e:
                        content = f"Error parsing PDF: {str(e)}"
                        st.error(f"Error parsing PDF {filename}: {str(e)}")
                    finally:
                        os.remove(tmp_path)
                elif file_ext == ".txt":
                    try:
                        content = file_bytes.decode("utf-8")
                    except UnicodeDecodeError:
                        content = file_bytes.decode("latin1")
                    except Exception as e:
                        content = f"Error decoding text file {filename}: {str(e)}"
                        st.error(f"Error decoding text file {filename}: {str(e)}")
                else:
                    continue  # Skip unsupported file types

                # Save to cache
                try:
                    with open(cache_file, "wb") as f:
                        pickle.dump(content, f)
                except Exception as e:
                    st.error(f"Error saving {filename} to cache: {str(e)}")

            submission_data.append({
                "filename": filename,
                "file_type": file_ext.replace(".", ""),
                "content": content,
                "metadata": {}
            })
    return submission_data

# --- Main Streamlit App ---

def main():
    st.title("IND Assistant and Submission Assessment")

    # Sidebar for app selection
    app_mode = st.sidebar.selectbox(
        "Choose an app mode",
        ["IND Assistant", "Submission Assessment"]
    )

    if app_mode == "IND Assistant":
        st.header("IND Assistant")
        st.markdown("Chat about Investigational New Drug Applications")

        # Add "Clear Chat History" button on the main screen
        if st.button("Clear Chat History"):
            if "messages" in st.session_state:
                del st.session_state["messages"]
            st.rerun()

        # Initialize session state
        if "messages" not in st.session_state:
            st.session_state.messages = []

        # Load preprocessed data and initialize the RAG chain
        if "rag_chain" not in st.session_state or "vectorstore" not in st.session_state:
            if not os.path.exists(PREPROCESSED_FILE):
                st.error(f"❌ Preprocessed file '{PREPROCESSED_FILE}' not found. Please run preprocessing first.")
                return  # Stop execution if preprocessed data is missing

            with st.spinner("πŸ”„ Initializing knowledge base..."):
                documents = load_preprocessed_data(PREPROCESSED_FILE)
                vectorstore = init_vector_store(documents)
                st.session_state.rag_chain = create_rag_chain(vectorstore.as_retriever())
                st.session_state.vectorstore = vectorstore # Store vectorstore in session state

        # Display chat history
        for message in st.session_state.messages:
            with st.chat_message(message["role"]):
                st.markdown(message["content"])

        # Chat input and response handling
        if prompt := st.chat_input("Ask about IND requirements"):
            st.session_state.messages.append({"role": "user", "content": prompt})

            # Display user message
            with st.chat_message("user"):
                st.markdown(prompt)

            # Generate response (cached if already asked before)
            with st.chat_message("assistant"):
                response = cached_response(prompt)
                st.markdown(response)

            # Store bot response in chat history
            st.session_state.messages.append({"role": "assistant", "content": response})

    elif app_mode == "Submission Assessment":
        st.header("Submission Package Assessment")
        st.write(
            """
            Upload a ZIP file containing your submission package, or enter the S3 URL of the ZIP file.
            The ZIP file can include PDF and text files.
            
            Required Files:
            1. Form FDA-1571
            2. Table of Contents
            3. Introductory Statement and General Investigational Plan
            4. Investigator Brochure
            5. Clinical Protocol
            6. Chemistry Manufacturing and Control Information (CMC)
            7. Pharmacology and Toxicology Data
            8. Previous Human Experience
            9. Additional Information
            """
        )

        # Option 1: Upload ZIP file
        uploaded_file = st.file_uploader("Choose a ZIP file", type=["zip"])

        # Option 2: Enter S3 URL
        s3_url = st.text_input("Or enter S3 URL of the ZIP file:")

        zip_file = None  # Initialize zip_file

        if uploaded_file is not None:
            zip_file = BytesIO(uploaded_file.read())
        elif s3_url:
            zip_file = download_zip_from_s3(s3_url)
        
        if zip_file:
            try:
                # Process the ZIP file
                submission_data = process_uploaded_zip(zip_file)
                st.success("File processed successfully!")

                # Display a summary of the extracted files
                st.subheader("Extracted Files")
                for file_info in submission_data:
                    st.write(f"**{file_info['filename']}** - ({file_info['file_type'].upper()})")

                # Instantiate and run the SupervisorAgent
                supervisor = SupervisorAgent(IND_CHECKLIST)
                assessment_report, completeness_percentage = supervisor.run(submission_data)

                # Display Completeness Percentage
                st.subheader("Submission Package Completeness")
                st.progress(completeness_percentage / 100)
                st.write(f"Overall Completeness: {completeness_percentage:.1f}%")

                # Display Assessment Report
                st.subheader("Assessment Report")
                st.markdown(assessment_report)

            except Exception as e:
                st.error(f"Error processing file: {str(e)}")

if __name__ == "__main__":
    # Preprocess PDF if it doesn't exist
    if not os.path.exists(PREPROCESSED_FILE):
        preprocess_pdf(PDF_FILE)
    main()