modified Dockerfile to Create Cache Directories
Browse filesDockerfile to Create Cache Directories
Create writable cache directories
- Dockerfile +37 -0
- main.py +96 -0
Dockerfile
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use an official Python runtime as the base image
|
| 2 |
+
FROM python:3.9-slim
|
| 3 |
+
|
| 4 |
+
# Set the working directory inside the container
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
# Install system dependencies for ML and data processing libraries
|
| 8 |
+
RUN apt-get update && apt-get install -y \
|
| 9 |
+
build-essential \
|
| 10 |
+
libopenblas-dev \
|
| 11 |
+
libomp-dev \
|
| 12 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 13 |
+
|
| 14 |
+
# Upgrade pip to avoid dependency issues
|
| 15 |
+
RUN pip install --upgrade pip
|
| 16 |
+
|
| 17 |
+
# Create writable cache directories
|
| 18 |
+
RUN mkdir -p /tmp/huggingface_cache /tmp/matplotlib
|
| 19 |
+
ENV TRANSFORMERS_CACHE=/tmp/huggingface_cache
|
| 20 |
+
ENV HF_HOME=/tmp/huggingface_cache
|
| 21 |
+
ENV MPLCONFIGDIR=/tmp/matplotlib
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# Copy the dependencies file first for caching efficiency
|
| 25 |
+
COPY requirements.txt /app/requirements.txt
|
| 26 |
+
|
| 27 |
+
# Install Python dependencies
|
| 28 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 29 |
+
|
| 30 |
+
# Copy the rest of the application code
|
| 31 |
+
COPY . /app
|
| 32 |
+
|
| 33 |
+
# Expose port 7860 (required by Hugging Face Spaces)
|
| 34 |
+
EXPOSE 7860
|
| 35 |
+
|
| 36 |
+
# Command to run the Flask app
|
| 37 |
+
CMD ["python", "main.py"]
|
main.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, request, render_template
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
| 5 |
+
from collections import Counter
|
| 6 |
+
import matplotlib
|
| 7 |
+
matplotlib.use('Agg') # Set the backend before importing pyplot
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
import base64
|
| 10 |
+
from io import BytesIO
|
| 11 |
+
import os
|
| 12 |
+
|
| 13 |
+
# Set writable cache directories for Hugging Face and Matplotlib
|
| 14 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface_cache"
|
| 15 |
+
os.environ["HF_HOME"] = "/tmp/huggingface_cache"
|
| 16 |
+
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib"
|
| 17 |
+
|
| 18 |
+
app = Flask(__name__)
|
| 19 |
+
|
| 20 |
+
# Load Model - Check if local model exists; otherwise, load from Hugging Face
|
| 21 |
+
MODEL_PATH = "bert_imdb_model.bin"
|
| 22 |
+
MODEL_HF_REPO = "philipobiorah/bert-imdb-model" # Replace with your Hugging Face model repo
|
| 23 |
+
|
| 24 |
+
if os.path.exists(MODEL_PATH):
|
| 25 |
+
print("Loading model from local file...")
|
| 26 |
+
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
|
| 27 |
+
model.load_state_dict(torch.load(MODEL_PATH, map_location=torch.device('cpu')))
|
| 28 |
+
else:
|
| 29 |
+
print("Loading model from Hugging Face Hub...")
|
| 30 |
+
model = BertForSequenceClassification.from_pretrained(MODEL_HF_REPO)
|
| 31 |
+
|
| 32 |
+
model.eval()
|
| 33 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
| 34 |
+
|
| 35 |
+
def predict_sentiment(text):
|
| 36 |
+
# Tokenize and split into chunks
|
| 37 |
+
tokens = tokenizer.encode(text, add_special_tokens=True)
|
| 38 |
+
chunks = [tokens[i:i + 512] for i in range(0, len(tokens), 512)]
|
| 39 |
+
|
| 40 |
+
# Predict sentiment for each chunk
|
| 41 |
+
sentiments = []
|
| 42 |
+
for chunk in chunks:
|
| 43 |
+
inputs = tokenizer.decode(chunk, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
| 44 |
+
inputs = tokenizer(inputs, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 45 |
+
|
| 46 |
+
with torch.no_grad():
|
| 47 |
+
outputs = model(**inputs)
|
| 48 |
+
|
| 49 |
+
sentiments.append(outputs.logits.argmax(dim=1).item())
|
| 50 |
+
|
| 51 |
+
# Aggregate sentiment results (majority voting)
|
| 52 |
+
majority_sentiment = Counter(sentiments).most_common(1)[0][0]
|
| 53 |
+
return 'Positive' if majority_sentiment == 1 else 'Negative'
|
| 54 |
+
|
| 55 |
+
@app.route('/')
|
| 56 |
+
def upload_file():
|
| 57 |
+
return render_template('upload.html')
|
| 58 |
+
|
| 59 |
+
@app.route('/analyze_text', methods=['POST'])
|
| 60 |
+
def analyze_text():
|
| 61 |
+
text = request.form['text']
|
| 62 |
+
sentiment = predict_sentiment(text)
|
| 63 |
+
return render_template('upload.html', sentiment=sentiment)
|
| 64 |
+
|
| 65 |
+
@app.route('/uploader', methods=['GET', 'POST'])
|
| 66 |
+
def upload_file_post():
|
| 67 |
+
if request.method == 'POST':
|
| 68 |
+
f = request.files['file']
|
| 69 |
+
data = pd.read_csv(f)
|
| 70 |
+
|
| 71 |
+
# Predict sentiment for each review
|
| 72 |
+
data['sentiment'] = data['review'].apply(predict_sentiment)
|
| 73 |
+
|
| 74 |
+
# Sentiment Analysis Summary
|
| 75 |
+
sentiment_counts = data['sentiment'].value_counts().to_dict()
|
| 76 |
+
summary = f"Total Reviews: {len(data)}<br>" \
|
| 77 |
+
f"Positive: {sentiment_counts.get('Positive', 0)}<br>" \
|
| 78 |
+
f"Negative: {sentiment_counts.get('Negative', 0)}<br>"
|
| 79 |
+
|
| 80 |
+
# Generate bar chart
|
| 81 |
+
fig, ax = plt.subplots()
|
| 82 |
+
ax.bar(sentiment_counts.keys(), sentiment_counts.values(), color=['red', 'blue'])
|
| 83 |
+
ax.set_ylabel('Counts')
|
| 84 |
+
ax.set_title('Sentiment Analysis Summary')
|
| 85 |
+
|
| 86 |
+
# Convert plot to base64 for embedding
|
| 87 |
+
img = BytesIO()
|
| 88 |
+
plt.savefig(img, format='png', bbox_inches='tight')
|
| 89 |
+
img.seek(0)
|
| 90 |
+
plot_url = base64.b64encode(img.getvalue()).decode('utf8')
|
| 91 |
+
plt.close(fig)
|
| 92 |
+
|
| 93 |
+
return render_template('result.html', tables=[data.to_html(classes='data')], titles=data.columns.values, summary=summary, plot_url=plot_url)
|
| 94 |
+
|
| 95 |
+
if __name__ == '__main__':
|
| 96 |
+
app.run(host='0.0.0.0', port=7860, debug=True)
|