Spaces:
Runtime error
Runtime error
Commit
·
c300ab5
1
Parent(s):
5590fe1
joy_caption
Browse files- caption_models.py +91 -2
- requirements.txt +3 -1
- wpkklhc6/image_adapter.pt +3 -0
- wpkklhc6/wpkklhc6_config.yaml +32 -0
caption_models.py
CHANGED
|
@@ -1,12 +1,13 @@
|
|
| 1 |
import spaces
|
| 2 |
import torch
|
| 3 |
from PIL import Image
|
| 4 |
-
from transformers import AutoProcessor, AutoModelForCausalLM, Qwen2VLForConditionalGeneration
|
| 5 |
from qwen_vl_utils import process_vision_info
|
| 6 |
import numpy as np
|
| 7 |
import os
|
| 8 |
from datetime import datetime
|
| 9 |
import subprocess
|
|
|
|
| 10 |
|
| 11 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 12 |
|
|
@@ -20,6 +21,45 @@ florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-large',
|
|
| 20 |
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype="auto").to(device).eval()
|
| 21 |
qwen_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
@spaces.GPU
|
| 24 |
def florence_caption(image):
|
| 25 |
if not isinstance(image, Image.Image):
|
|
@@ -91,4 +131,53 @@ def qwen_caption(image):
|
|
| 91 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 92 |
)
|
| 93 |
|
| 94 |
-
return output_text[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import spaces
|
| 2 |
import torch
|
| 3 |
from PIL import Image
|
| 4 |
+
from transformers import AutoProcessor, AutoModelForCausalLM, Qwen2VLForConditionalGeneration, AutoModel, AutoTokenizer, AutoModelForCausalLM
|
| 5 |
from qwen_vl_utils import process_vision_info
|
| 6 |
import numpy as np
|
| 7 |
import os
|
| 8 |
from datetime import datetime
|
| 9 |
import subprocess
|
| 10 |
+
import torch.nn as nn
|
| 11 |
|
| 12 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 13 |
|
|
|
|
| 21 |
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype="auto").to(device).eval()
|
| 22 |
qwen_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
|
| 23 |
|
| 24 |
+
# Add these new imports and constants
|
| 25 |
+
CLIP_PATH = "google/siglip-so400m-patch14-384"
|
| 26 |
+
VLM_PROMPT = "A descriptive caption for this image:\n"
|
| 27 |
+
MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B"
|
| 28 |
+
CHECKPOINT_PATH = "wpkklhc6"
|
| 29 |
+
|
| 30 |
+
class ImageAdapter(nn.Module):
|
| 31 |
+
def __init__(self, input_features: int, output_features: int):
|
| 32 |
+
super().__init__()
|
| 33 |
+
self.linear1 = nn.Linear(input_features, output_features)
|
| 34 |
+
self.activation = nn.GELU()
|
| 35 |
+
self.linear2 = nn.Linear(output_features, output_features)
|
| 36 |
+
|
| 37 |
+
def forward(self, vision_outputs: torch.Tensor):
|
| 38 |
+
x = self.linear1(vision_outputs)
|
| 39 |
+
x = self.activation(x)
|
| 40 |
+
x = self.linear2(x)
|
| 41 |
+
return x
|
| 42 |
+
|
| 43 |
+
# Load CLIP
|
| 44 |
+
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
|
| 45 |
+
clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model
|
| 46 |
+
clip_model.eval()
|
| 47 |
+
clip_model.requires_grad_(False)
|
| 48 |
+
clip_model.to(device)
|
| 49 |
+
|
| 50 |
+
# Tokenizer
|
| 51 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)
|
| 52 |
+
|
| 53 |
+
# LLM
|
| 54 |
+
text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16)
|
| 55 |
+
text_model.eval()
|
| 56 |
+
|
| 57 |
+
# Image Adapter
|
| 58 |
+
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size)
|
| 59 |
+
image_adapter.load_state_dict(torch.load(f"{CHECKPOINT_PATH}/image_adapter.pt", map_location="cpu"))
|
| 60 |
+
image_adapter.eval()
|
| 61 |
+
image_adapter.to(device)
|
| 62 |
+
|
| 63 |
@spaces.GPU
|
| 64 |
def florence_caption(image):
|
| 65 |
if not isinstance(image, Image.Image):
|
|
|
|
| 131 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 132 |
)
|
| 133 |
|
| 134 |
+
return output_text[0]
|
| 135 |
+
|
| 136 |
+
@spaces.GPU
|
| 137 |
+
@torch.no_grad()
|
| 138 |
+
def joycaption(image):
|
| 139 |
+
if not isinstance(image, Image.Image):
|
| 140 |
+
image = Image.fromarray(np.uint8(image))
|
| 141 |
+
|
| 142 |
+
# Preprocess image
|
| 143 |
+
image = clip_processor(images=image, return_tensors='pt').pixel_values
|
| 144 |
+
image = image.to(device)
|
| 145 |
+
|
| 146 |
+
# Tokenize the prompt
|
| 147 |
+
prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)
|
| 148 |
+
|
| 149 |
+
# Embed image
|
| 150 |
+
with torch.amp.autocast_mode.autocast(device_type='cuda', enabled=True):
|
| 151 |
+
vision_outputs = clip_model(pixel_values=image, output_hidden_states=True)
|
| 152 |
+
image_features = vision_outputs.hidden_states[-2]
|
| 153 |
+
embedded_images = image_adapter(image_features)
|
| 154 |
+
embedded_images = embedded_images.to(device)
|
| 155 |
+
|
| 156 |
+
# Embed prompt
|
| 157 |
+
prompt_embeds = text_model.model.embed_tokens(prompt.to(device))
|
| 158 |
+
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=device, dtype=torch.int64))
|
| 159 |
+
|
| 160 |
+
# Construct prompts
|
| 161 |
+
inputs_embeds = torch.cat([
|
| 162 |
+
embedded_bos.expand(embedded_images.shape[0], -1, -1),
|
| 163 |
+
embedded_images.to(dtype=embedded_bos.dtype),
|
| 164 |
+
prompt_embeds.expand(embedded_images.shape[0], -1, -1),
|
| 165 |
+
], dim=1)
|
| 166 |
+
|
| 167 |
+
input_ids = torch.cat([
|
| 168 |
+
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
|
| 169 |
+
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
|
| 170 |
+
prompt,
|
| 171 |
+
], dim=1).to(device)
|
| 172 |
+
attention_mask = torch.ones_like(input_ids)
|
| 173 |
+
|
| 174 |
+
generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None)
|
| 175 |
+
|
| 176 |
+
# Trim off the prompt
|
| 177 |
+
generate_ids = generate_ids[:, input_ids.shape[1]:]
|
| 178 |
+
if generate_ids[0][-1] == tokenizer.eos_token_id:
|
| 179 |
+
generate_ids = generate_ids[:, :-1]
|
| 180 |
+
|
| 181 |
+
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
|
| 182 |
+
|
| 183 |
+
return caption.strip()
|
requirements.txt
CHANGED
|
@@ -10,4 +10,6 @@ git+https://github.com/huggingface/transformers.git
|
|
| 10 |
accelerate
|
| 11 |
qwen-vl-utils
|
| 12 |
anthropic
|
| 13 |
-
groq
|
|
|
|
|
|
|
|
|
| 10 |
accelerate
|
| 11 |
qwen-vl-utils
|
| 12 |
anthropic
|
| 13 |
+
groq
|
| 14 |
+
sentencepiece
|
| 15 |
+
huggingface_hub==0.24.3
|
wpkklhc6/image_adapter.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2ebb1d1437bbb3264a6f25a896b25a7c7dd06c570c5de909dc2f19d3a5c5c110
|
| 3 |
+
size 86018240
|
wpkklhc6/wpkklhc6_config.yaml
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
wandb_project: joy-caption-1
|
| 2 |
+
device_batch_size: 2
|
| 3 |
+
batch_size: 256
|
| 4 |
+
learning_rate: 0.001
|
| 5 |
+
warmup_samples: 18000
|
| 6 |
+
max_samples: 600000
|
| 7 |
+
save_every: 50000
|
| 8 |
+
test_every: 50000
|
| 9 |
+
use_amp: true
|
| 10 |
+
grad_scaler: true
|
| 11 |
+
lr_scheduler_type: cosine
|
| 12 |
+
min_lr_ratio: 0.0
|
| 13 |
+
allow_tf32: true
|
| 14 |
+
seed: 42
|
| 15 |
+
num_workers: 8
|
| 16 |
+
optimizer_type: adamw
|
| 17 |
+
adam_beta1: 0.9
|
| 18 |
+
adam_beta2: 0.999
|
| 19 |
+
adam_eps: 1.0e-08
|
| 20 |
+
adam_weight_decay: 0.0
|
| 21 |
+
clip_grad_norm: 1.0
|
| 22 |
+
dataset: fancyfeast/joy-captioning-20240729a
|
| 23 |
+
clip_model: google/siglip-so400m-patch14-384
|
| 24 |
+
text_model: meta-llama/Meta-Llama-3.1-8B
|
| 25 |
+
resume: null
|
| 26 |
+
gradient_checkpointing: false
|
| 27 |
+
test_size: 2048
|
| 28 |
+
grad_scaler_init: 65536.0
|
| 29 |
+
max_caption_length: 257
|
| 30 |
+
num_image_tokens: 32
|
| 31 |
+
adapter_type: mlp
|
| 32 |
+
text_model_dtype: float16
|