Spaces:
Sleeping
Sleeping
import base64 | |
import os | |
from typing import Optional | |
import pandas as pd | |
import requests | |
import whisper | |
from bs4 import BeautifulSoup | |
from datetime import datetime | |
from dotenv import find_dotenv, load_dotenv | |
from langchain.chains import RetrievalQA | |
from langchain.chat_models import init_chat_model | |
from langchain_community.document_loaders import ( | |
UnstructuredPDFLoader, UnstructuredPowerPointLoader, | |
UnstructuredWordDocumentLoader, WebBaseLoader) | |
from langchain_community.tools import DuckDuckGoSearchRun | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_core.tools import tool | |
from langchain.schema import Document | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import FAISS | |
from langchain_huggingface.embeddings import HuggingFaceEmbeddings | |
from markdownify import markdownify as md | |
from youtube_transcript_api import YouTubeTranscriptApi | |
from yt_dlp import YoutubeDL | |
UNWANTED_SECTIONS = { | |
"references", | |
"external links", | |
"further reading", | |
"see also", | |
"notes", | |
} | |
def get_weather_info(location: str) -> str: | |
"""Fetches weather information for a given location. | |
Usage: | |
``` | |
# Initialize the tool | |
weather_info_tool = Tool( | |
name="get_weather_info", | |
func=get_weather_info, | |
description="Fetches weather information for a given location.") | |
``` | |
""" | |
load_dotenv(find_dotenv()) | |
api_key = os.getenv("OPENWEATHERMAP_API_KEY") | |
url = ( | |
f"https://api.openweathermap.org/data/2.5/" | |
f"weather?q={location}&appid={api_key}&units=metric" | |
) | |
res = requests.get(url, timeout=15) | |
data = res.json() | |
humidity = data["main"]["humidity"] | |
pressure = data["main"]["pressure"] | |
wind = data["wind"]["speed"] | |
description = data["weather"][0]["description"] | |
temp = data["main"]["temp"] | |
min_temp = data["main"]["temp_min"] | |
max_temp = data["main"]["temp_max"] | |
return ( | |
f"Weather in {location}: {description}, " | |
f"Temperature: {temp}°C, Min: {min_temp}°C, Max: {max_temp}°C, " | |
f"Humidity: {humidity}%, Pressure: {pressure} hPa, " | |
f"Wind Speed: {wind} m/s" | |
) | |
def add(a: int, b: int) -> int: | |
"""Adds two numbers together. | |
Args: | |
a (int): The first number. | |
b (int): The second number. | |
""" | |
return a + b | |
def get_sum(list_of_numbers: list[int]) -> int: | |
"""Sums a list of numbers. | |
Args: | |
list_of_numbers (list[int]): The list of numbers to sum. | |
""" | |
return sum(list_of_numbers) | |
def subtract(a: int, b: int) -> int: | |
"""Subtracts the second number from the first. | |
Args: | |
a (int): The first number. | |
b (int): The second number. | |
""" | |
return a - b | |
def multiply(a: int, b: int) -> int: | |
"""Multiplies two numbers together. | |
Args: | |
a (int): The first number. | |
b (int): The second number. | |
""" | |
return a * b | |
def divide(a: int, b: int) -> float: | |
"""Divides the first number by the second. | |
Args: | |
a (int): The first number. | |
b (int): The second number. | |
""" | |
if b == 0: | |
raise ValueError("Cannot divide by zero.") | |
return a / b | |
def get_current_time_and_date() -> str: | |
"""Returns the current time and date in ISO format.""" | |
return datetime.now().isoformat() | |
def reverse_text(text: str) -> str: | |
"""Reverses the given text. | |
Args: | |
text (str): The text to reverse. | |
""" | |
return text[::-1] | |
def build_retriever(text: str): | |
"""Builds a retriever from the given text. | |
Args: | |
text (str): The text to be used for retrieval. | |
""" | |
splitter = RecursiveCharacterTextSplitter( | |
separators=["\n### ", "\n## ", "\n# "], | |
chunk_size=1000, | |
chunk_overlap=200, | |
) | |
chunks = splitter.split_text(text) | |
docs = [ | |
Document(page_content=chunk) | |
for chunk in chunks | |
] | |
hf_embed = HuggingFaceEmbeddings( | |
model_name="sentence-transformers/all-MiniLM-L6-v2" | |
) | |
index = FAISS.from_documents(docs, hf_embed) | |
return index.as_retriever(search_kwargs={"k": 3}) | |
def get_retrieval_qa(text: str): | |
"""Creates a RetrievalQA instance for the given text. | |
Args: | |
text (str): The text to be used for retrieval. | |
""" | |
retriever = build_retriever(text) | |
llm = init_chat_model("groq:meta-llama/llama-4-scout-17b-16e-instruct") | |
return RetrievalQA.from_chain_type( | |
llm=llm, | |
chain_type="stuff", | |
retriever=retriever, | |
return_source_documents=True, | |
) | |
def clean_html(html: str) -> str: | |
soup = BeautifulSoup(html, "html.parser") | |
# 1. Remove <script> & <style> | |
for tag in soup(["script", "style"]): | |
tag.decompose() | |
# 2. Drop whole <section> blocks whose first heading is unwanted | |
for sec in soup.find_all("section"): | |
h = sec.find(["h1","h2","h3","h4","h5","h6"]) | |
if h and any(h.get_text(strip=True).lower().startswith(u) for u in UNWANTED_SECTIONS): | |
sec.decompose() | |
# 3. Additional filtering by CSS selector | |
for selector in [".toc", ".navbox", ".vertical-navbox", ".hatnote", ".reflist", ".mw-references-wrap"]: | |
for el in soup.select(selector): | |
el.decompose() | |
# 4. Isolate the main content container if present | |
main = soup.find("div", class_="mw-parser-output") | |
return str(main or soup) | |
def get_wikipedia_article(query: str, lang: str = "en") -> str: | |
"""Fetches a Wikipedia article for a given query and returns its content in Markdown format. | |
Args: | |
query (str): The search query. | |
lang (str): The language code for the search. Default is "en". | |
""" | |
headers = { | |
'User-Agent': 'MyLLMAgent ([email protected])' | |
} | |
# Step 1: Search | |
search_url = f"https://api.wikimedia.org/core/v1/wikipedia/{lang}/search/page" | |
search_params = {'q': query, 'limit': 1} | |
search_response = requests.get(search_url, headers=headers, params=search_params, timeout=15) | |
if search_response.status_code != 200: | |
return f"Search error: {search_response.status_code}" | |
results = search_response.json().get("pages", []) | |
if not results: | |
return "No results found." | |
page = results[0] | |
page_key = page["key"] | |
# Step 2: Get the wiki page, only keep relevant content and convert to Markdown | |
content_url = f"https://api.wikimedia.org/core/v1/wikipedia/{lang}/page/{page_key}/html" | |
content_response = requests.get(content_url, timeout=15) | |
if content_response.status_code != 200: | |
return f"Content fetch error: {content_response.status_code}" | |
html = clean_html(content_response.text) | |
markdown = md( | |
html, | |
heading_style="ATX", | |
bullets="*+-", | |
table_infer_header=True, | |
strip=['a', 'span'] | |
) | |
return markdown | |
def wiki_search(query: str, question: str, lang: str="en") -> str: | |
"""Searches Wikipedia for a specific article and answers a question based on its content. | |
The function retrieves a Wikipedia article based on the provided query, converts it to Markdown, | |
and uses a retrieval-based QA system to answer the specified question. | |
Args: | |
query (str): A concise topic name with optional keywords, ideally matching the relevant Wikipedia page title. | |
question (str): The question to answer using the article. | |
lang (str): Language code for the Wikipedia edition to search (default: "en"). | |
""" | |
markdown = get_wikipedia_article(query, lang) | |
qa = get_retrieval_qa(markdown) | |
return qa.invoke(question) | |
def web_search(query: str) -> str: | |
"""Searches the web for a given query and returns the first result. | |
Args: | |
query (str): The search query. | |
""" | |
search_tool = DuckDuckGoSearchRun() | |
results = search_tool.invoke(query) | |
if results: | |
return results | |
else: | |
return "No results found." | |
def visit_website(url: str) -> str: | |
"""Visits a website and returns the content. | |
Args: | |
url (str): The URL of the website to visit. | |
""" | |
loader = WebBaseLoader(url) | |
documents = loader.load() | |
if documents: | |
return documents[0].page_content | |
else: | |
return "No content found." | |
def get_youtube_transcript(video_url: str, return_timestamps: bool = False) -> str: | |
"""Fetches the transcript of a YouTube video. | |
Args: | |
video_url (str): The URL of the YouTube video. | |
return_timestamps (bool): If True, returns timestamps with the transcript. Otherwise, returns only the text. | |
""" | |
try: | |
video_id = video_url.split("v=")[-1] | |
transcript = YouTubeTranscriptApi.get_transcript(video_id) | |
if return_timestamps: | |
sentences = [] | |
for t in transcript: | |
start = t["start"] | |
end = start + t["duration"] | |
sentences.append(f"{start:.2f} - {end:.2f}: {t['text']}") | |
return "\n".join(sentences) | |
else: | |
return "\n".join([t["text"] for t in transcript]) | |
except Exception as e: | |
return f"Error fetching transcript: {e}" | |
def get_youtube_video_info(video_url: str) -> str: | |
"""Fetches information about a YouTube video. | |
Args: | |
video_url (str): The URL of the YouTube video. | |
""" | |
try: | |
ydl_opts = { | |
"quiet": True, | |
"skip_download": True, | |
} | |
with YoutubeDL(ydl_opts) as ydl: | |
info = ydl.extract_info(video_url, download=False) | |
video_info = { | |
"Title": info.get("title"), | |
"Description": info.get("description"), | |
"Uploader": info.get("uploader"), | |
"Upload date": info.get("upload_date"), | |
"Duration": info.get("duration"), | |
"View count": info.get("view_count"), | |
"Like count": info.get("like_count"), | |
} | |
video_info_filtered = {k: v for k, v in video_info.items() if v is not None} | |
video_info_str = "\n".join( | |
[f"{k}: {v}" for k, v in video_info_filtered.items()] | |
) | |
return video_info_str | |
except Exception as e: | |
return f"Error fetching video info: {e}" | |
def encode_image(image_path): | |
with open(image_path, "rb") as image_file: | |
return base64.b64encode(image_file.read()).decode("utf-8") | |
def ask_about_image(image_path: str, question: str) -> str: | |
"""Performs vision-based question answering on an image. | |
Args: | |
image_path (str): The path to the image file. | |
question (str): Your question about the image, as a natural language sentence. Provide as much context as possible. | |
""" | |
load_dotenv(find_dotenv()) | |
llm = init_chat_model("groq:meta-llama/llama-4-maverick-17b-128e-instruct") | |
prompt = ChatPromptTemplate( | |
[ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "text", | |
"text": "Please write a concise caption for the image that helps answer the following question: {question}", | |
}, | |
{ | |
"type": "image_url", | |
"image_url": { | |
"url": "data:image/{image_format};base64,{base64_image}", | |
}, | |
}, | |
], | |
} | |
] | |
) | |
file_suffix = os.path.splitext(image_path)[-1] | |
if file_suffix == ".png": | |
image_format = "png" | |
else: | |
# We could handle other formats explicitly, but for simplicity we assume JPEG | |
image_format = "jpeg" | |
chain = prompt | llm | |
response = chain.invoke( | |
{ | |
"question": question, | |
"base64_image": encode_image(image_path), | |
"image_format": image_format, | |
} | |
) | |
return response.text() | |
def transcribe_audio(audio_path: str) -> str: | |
"""Transcribes audio to text. | |
Args: | |
audio_path (str): The path to the audio file. | |
""" | |
model = whisper.load_model("base") | |
result = model.transcribe(audio_path) | |
text = result.text | |
return text | |
def get_table_description(table: pd.DataFrame) -> str: | |
"""Generates a description of the table. If applicable, calculates sum and mean of numeric | |
columns. | |
Args: | |
table (pd.DataFrame): The table to describe. | |
""" | |
if table.empty: | |
return "The table is empty." | |
description = [] | |
total_sum = 0 | |
for column in table.select_dtypes(include=[int, float]).columns: | |
column_sum = table[column].sum() | |
column_mean = table[column].mean() | |
description.append( | |
f"Column '{column}': Sum = {column_sum}, Mean = {column_mean:.2f}" | |
) | |
total_sum += column_sum | |
if total_sum: | |
description.append(f"Total Sum of all numeric columns: {total_sum}") | |
if description: | |
description = "\n".join(description) | |
else: | |
description = "No numeric columns to summarize." | |
# Add the number of rows and columns | |
description += f"\n\nTable has {table.shape[0]} rows and {table.shape[1]} columns." | |
df_as_markdown = table.to_markdown() | |
description += f"\n\nTable:\n{df_as_markdown}" | |
return description | |
def inspect_file_as_text(file_path: str) -> str: | |
"""This tool reads a file as markdown text. It handles [".csv", ".xlsx", ".pptx", ".wav", | |
".mp3", ".m4a", ".flac", ".pdf", ".docx"], and all other types of text files. IT DOES NOT | |
HANDLE IMAGES. | |
Args: | |
file_path (str): The path to the file you want to read as text. If it is an image, use `vision_qa` tool. | |
""" | |
# TODO we could also pass the file content to a retrieval chain | |
try: | |
suffix = os.path.splitext(file_path)[-1] | |
if suffix in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff"]: | |
raise Exception( | |
"Cannot use inspect_file_as_text tool with images: use `vision_qa` tool instead!" | |
) | |
if suffix in [".csv", ".tsv", ".xlsx"]: | |
if suffix == ".csv": | |
df = pd.read_csv(file_path) | |
elif suffix == ".tsv": | |
df = pd.read_csv(file_path, sep="\t") | |
elif suffix == ".xlsx": | |
df = pd.read_excel(file_path) | |
else: | |
raise Exception(f"Unsupported file type: {suffix}") | |
table_description = get_table_description(df) | |
return table_description | |
elif suffix == ".pptx": | |
doc = UnstructuredPowerPointLoader(file_path) | |
return doc.load()[0].page_content | |
elif suffix == ".pdf": | |
doc = UnstructuredPDFLoader(file_path) | |
return doc.load()[0].page_content | |
elif suffix == ".docx": | |
doc = UnstructuredWordDocumentLoader(file_path) | |
return doc.load()[0].page_content | |
elif suffix in [".wav", ".mp3", ".m4a", ".flac"]: | |
return transcribe_audio(file_path) | |
else: | |
# All other text files | |
with open(file_path, "r", encoding="utf-8") as file: | |
content = file.read() | |
return content | |
except Exception as e: | |
return f"Error file: {e}" | |