Spaces:
Sleeping
Sleeping
Update files
Browse files
.env.example
CHANGED
@@ -13,3 +13,5 @@
|
|
13 |
# HUGGINGFACE_API_KEY=YOUR_HUGGINGFACE_API_KEY
|
14 |
# ANTHROPIC_API_KEY=YOUR_ANTHROPIC_API_KEY
|
15 |
# GROQ_API_KEY=YOUR_GROQ_API_KEY
|
|
|
|
|
|
13 |
# HUGGINGFACE_API_KEY=YOUR_HUGGINGFACE_API_KEY
|
14 |
# ANTHROPIC_API_KEY=YOUR_ANTHROPIC_API_KEY
|
15 |
# GROQ_API_KEY=YOUR_GROQ_API_KEY
|
16 |
+
# TAVILY_API_KEY=YOUR_TAVILY_API_KEY
|
17 |
+
# SERPER_API_KEY=YOUR_SERPER_API_KEY
|
agent.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
from typing import Annotated, TypedDict
|
2 |
-
|
3 |
from dotenv import find_dotenv, load_dotenv
|
4 |
from langchain.chat_models import init_chat_model
|
5 |
from langchain_core.messages import HumanMessage, SystemMessage
|
@@ -7,12 +5,12 @@ from langfuse.callback import CallbackHandler
|
|
7 |
from langgraph.graph.message import add_messages
|
8 |
from langgraph.graph import START, StateGraph
|
9 |
from langgraph.prebuilt import ToolNode, tools_condition
|
|
|
10 |
|
11 |
from tools import (add, ask_about_image, divide, get_current_time_and_date,
|
12 |
-
get_sum, get_weather_info,
|
13 |
-
|
14 |
-
|
15 |
-
wiki_search)
|
16 |
|
17 |
|
18 |
class AgentState(TypedDict):
|
@@ -22,20 +20,32 @@ class AgentState(TypedDict):
|
|
22 |
class BasicAgent:
|
23 |
def __init__(self):
|
24 |
load_dotenv(find_dotenv())
|
25 |
-
llm = init_chat_model("groq:meta-llama/llama-4-
|
26 |
system_prompt = (
|
27 |
"You are a powerful general AI assistant designed to answer challenging questions using reasoning and tools.\n"
|
28 |
-
"Each question has a correct answer, and
|
29 |
-
"
|
30 |
-
"
|
31 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
"FINAL ANSWER: [YOUR FINAL ANSWER]\n\n"
|
33 |
"Your final answer must follow these rules:\n"
|
34 |
-
"- If the answer is a number, do not use
|
35 |
"- If the answer is a string, use as few words as possible and do not use articles, abbreviations, or numeric digits.\n"
|
36 |
-
"- If the answer is a comma-separated list, follow the above rules for each element.\n"
|
37 |
-
"- If the answer is a string
|
38 |
"Do not say “I cannot answer” or “no answer found”. Success is mandatory. "
|
|
|
39 |
"You have access to everything you need to solve this."
|
40 |
)
|
41 |
tools = [
|
@@ -46,14 +56,15 @@ class BasicAgent:
|
|
46 |
multiply,
|
47 |
divide,
|
48 |
get_current_time_and_date,
|
49 |
-
|
|
|
50 |
web_search,
|
51 |
visit_website,
|
52 |
inspect_file_as_text,
|
|
|
53 |
ask_about_image,
|
54 |
reverse_text,
|
55 |
get_youtube_video_info,
|
56 |
-
get_youtube_transcript,
|
57 |
]
|
58 |
llm_with_tools = llm.bind_tools(tools)
|
59 |
|
|
|
|
|
|
|
1 |
from dotenv import find_dotenv, load_dotenv
|
2 |
from langchain.chat_models import init_chat_model
|
3 |
from langchain_core.messages import HumanMessage, SystemMessage
|
|
|
5 |
from langgraph.graph.message import add_messages
|
6 |
from langgraph.graph import START, StateGraph
|
7 |
from langgraph.prebuilt import ToolNode, tools_condition
|
8 |
+
from typing import Annotated, TypedDict
|
9 |
|
10 |
from tools import (add, ask_about_image, divide, get_current_time_and_date,
|
11 |
+
get_sum, get_weather_info, get_youtube_video_info,
|
12 |
+
inspect_file_as_text, multiply, reverse_text, subtract, visit_website,
|
13 |
+
web_search, wiki_search_article, wiki_get_section, transcribe_audio)
|
|
|
14 |
|
15 |
|
16 |
class AgentState(TypedDict):
|
|
|
20 |
class BasicAgent:
|
21 |
def __init__(self):
|
22 |
load_dotenv(find_dotenv())
|
23 |
+
llm = init_chat_model("groq:meta-llama/llama-4-maverick-17b-128e-instruct")
|
24 |
system_prompt = (
|
25 |
"You are a powerful general AI assistant designed to answer challenging questions using reasoning and tools.\n"
|
26 |
+
"Each question has a single correct answer. Use clear, step-by-step reasoning and the available tools to "
|
27 |
+
"find and verify that answer.\n"
|
28 |
+
"Choose the appropriate tool:\n"
|
29 |
+
"- \n"
|
30 |
+
"- For text files, use `inspect_file_as_text` to read the file and extract relevant information.\n"
|
31 |
+
"- For audio files, use `transcribe_audio` to transcribe the audio and extract relevant information.\n"
|
32 |
+
"- For images, use `ask_about_image` to analyze the image and answer questions about it.\n"
|
33 |
+
"- You can search the web using `web_search` to find information not available in your training data and"
|
34 |
+
"use `visit_website` to retrieve the website content.\n"
|
35 |
+
"- If you need to search for a wikipedia article, call `wiki_search`, parse `page_key` and `toc`, "
|
36 |
+
"then only after this step call `wiki_get_section` to fetch exactly the section/subsection you need for answering. "
|
37 |
+
"**Never** guess `page_key` or section names—always derive them from the previous tool's output.\n"
|
38 |
+
"- For YouTube links you can use `get_youtube_video_info` to retrieve information and the transcript about a YouTube video.\n"
|
39 |
+
"If the user supplies a file path or URL, **always** call the appropriate tool first—do not guess. "
|
40 |
+
"Think through the problem step by step, explain your reasoning and then clearly state your final answer using this format:\n"
|
41 |
"FINAL ANSWER: [YOUR FINAL ANSWER]\n\n"
|
42 |
"Your final answer must follow these rules:\n"
|
43 |
+
"- If the answer is a number, do not use or units (e.g. '$' or '%') unless the question explicitly asks for the unit.\n"
|
44 |
"- If the answer is a string, use as few words as possible and do not use articles, abbreviations, or numeric digits.\n"
|
45 |
+
"- If the answer is a comma-separated list, follow the above rules for each element. Separate elements with a comma and a single space.\n"
|
46 |
+
"- If the answer is a single string, capitalize the first letter of the final answer and do NOT add punctuation unless the question requires it.\n"
|
47 |
"Do not say “I cannot answer” or “no answer found”. Success is mandatory. "
|
48 |
+
"Only apply criteria the question specifies—no extra assumptions. "
|
49 |
"You have access to everything you need to solve this."
|
50 |
)
|
51 |
tools = [
|
|
|
56 |
multiply,
|
57 |
divide,
|
58 |
get_current_time_and_date,
|
59 |
+
wiki_get_section,
|
60 |
+
wiki_search_article,
|
61 |
web_search,
|
62 |
visit_website,
|
63 |
inspect_file_as_text,
|
64 |
+
transcribe_audio,
|
65 |
ask_about_image,
|
66 |
reverse_text,
|
67 |
get_youtube_video_info,
|
|
|
68 |
]
|
69 |
llm_with_tools = llm.bind_tools(tools)
|
70 |
|
app.py
CHANGED
@@ -36,7 +36,10 @@ def solve_question(question: Dict[str, str]) -> Dict[str, str]:
|
|
36 |
augmented_question = prompt_template["user_prompt"] + question_text
|
37 |
if question.get("file_name"):
|
38 |
file_url = DEFAULT_API_URL + "/files"
|
39 |
-
response = requests.get(f"{file_url}/{question['
|
|
|
|
|
|
|
40 |
file_path = Path("files") / question["file_name"]
|
41 |
# Create files directory if it doesn't exist
|
42 |
file_path.parent.mkdir(parents=True, exist_ok=True)
|
|
|
36 |
augmented_question = prompt_template["user_prompt"] + question_text
|
37 |
if question.get("file_name"):
|
38 |
file_url = DEFAULT_API_URL + "/files"
|
39 |
+
response = requests.get(f"{file_url}/{question['task_id']}", timeout=15)
|
40 |
+
# Check if the request was successful
|
41 |
+
if response.status_code != 200:
|
42 |
+
raise ValueError(f"Failed to fetch file for task {task_id}: {response.status_code} - {response.text}")
|
43 |
file_path = Path("files") / question["file_name"]
|
44 |
# Create files directory if it doesn't exist
|
45 |
file_path.parent.mkdir(parents=True, exist_ok=True)
|
tools.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
import base64
|
|
|
2 |
import os
|
3 |
-
|
|
|
4 |
|
5 |
import pandas as pd
|
6 |
import requests
|
@@ -11,16 +13,18 @@ from datetime import datetime
|
|
11 |
from dotenv import find_dotenv, load_dotenv
|
12 |
from langchain.chains import RetrievalQA
|
13 |
from langchain.chat_models import init_chat_model
|
|
|
|
|
14 |
from langchain_community.document_loaders import (
|
15 |
UnstructuredPDFLoader, UnstructuredPowerPointLoader,
|
16 |
UnstructuredWordDocumentLoader, WebBaseLoader)
|
17 |
-
from langchain_community.tools import
|
|
|
|
|
18 |
from langchain_core.prompts import ChatPromptTemplate
|
19 |
from langchain_core.tools import tool
|
20 |
-
from langchain.schema import Document
|
21 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
22 |
-
from langchain_community.vectorstores import FAISS
|
23 |
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
|
|
|
24 |
from markdownify import markdownify as md
|
25 |
from youtube_transcript_api import YouTubeTranscriptApi
|
26 |
from yt_dlp import YoutubeDL
|
@@ -204,53 +208,94 @@ def clean_html(html: str) -> str:
|
|
204 |
return str(main or soup)
|
205 |
|
206 |
|
207 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
"""Fetches a Wikipedia article for a given query and returns its content in Markdown format.
|
209 |
|
210 |
Args:
|
211 |
query (str): The search query.
|
212 |
-
lang (str): The language code for the search. Default is "en".
|
213 |
"""
|
214 |
headers = {
|
215 |
'User-Agent': 'MyLLMAgent ([email protected])'
|
216 |
}
|
217 |
|
218 |
# Step 1: Search
|
219 |
-
search_url = f"https://api.wikimedia.org/core/v1/wikipedia/
|
220 |
search_params = {'q': query, 'limit': 1}
|
221 |
search_response = requests.get(search_url, headers=headers, params=search_params, timeout=15)
|
222 |
|
223 |
if search_response.status_code != 200:
|
224 |
-
|
225 |
|
226 |
results = search_response.json().get("pages", [])
|
227 |
if not results:
|
228 |
-
|
229 |
|
230 |
page = results[0]
|
231 |
page_key = page["key"]
|
232 |
|
233 |
# Step 2: Get the wiki page, only keep relevant content and convert to Markdown
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
|
240 |
-
html = clean_html(content_response.text)
|
241 |
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
|
251 |
|
252 |
@tool
|
253 |
-
def
|
254 |
"""Searches Wikipedia for a specific article and answers a question based on its content.
|
255 |
|
256 |
The function retrieves a Wikipedia article based on the provided query, converts it to Markdown,
|
@@ -259,22 +304,101 @@ def wiki_search(query: str, question: str, lang: str="en") -> str:
|
|
259 |
Args:
|
260 |
query (str): A concise topic name with optional keywords, ideally matching the relevant Wikipedia page title.
|
261 |
question (str): The question to answer using the article.
|
262 |
-
lang (str): Language code for the Wikipedia edition to search (default: "en").
|
263 |
"""
|
264 |
-
|
|
|
265 |
qa = get_retrieval_qa(markdown)
|
266 |
return qa.invoke(question)
|
267 |
|
268 |
|
269 |
@tool
|
270 |
-
def
|
271 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
|
273 |
Args:
|
274 |
query (str): The search query.
|
|
|
275 |
"""
|
276 |
-
|
277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
if results:
|
279 |
return results
|
280 |
else:
|
@@ -296,37 +420,14 @@ def visit_website(url: str) -> str:
|
|
296 |
return "No content found."
|
297 |
|
298 |
|
299 |
-
@tool
|
300 |
-
def get_youtube_transcript(video_url: str, return_timestamps: bool = False) -> str:
|
301 |
-
"""Fetches the transcript of a YouTube video.
|
302 |
-
|
303 |
-
Args:
|
304 |
-
video_url (str): The URL of the YouTube video.
|
305 |
-
return_timestamps (bool): If True, returns timestamps with the transcript. Otherwise, returns only the text.
|
306 |
-
"""
|
307 |
-
try:
|
308 |
-
video_id = video_url.split("v=")[-1]
|
309 |
-
transcript = YouTubeTranscriptApi.get_transcript(video_id)
|
310 |
-
if return_timestamps:
|
311 |
-
sentences = []
|
312 |
-
for t in transcript:
|
313 |
-
start = t["start"]
|
314 |
-
end = start + t["duration"]
|
315 |
-
sentences.append(f"{start:.2f} - {end:.2f}: {t['text']}")
|
316 |
-
return "\n".join(sentences)
|
317 |
-
else:
|
318 |
-
return "\n".join([t["text"] for t in transcript])
|
319 |
-
except Exception as e:
|
320 |
-
return f"Error fetching transcript: {e}"
|
321 |
-
|
322 |
-
|
323 |
@tool
|
324 |
def get_youtube_video_info(video_url: str) -> str:
|
325 |
-
"""Fetches information about a YouTube video.
|
326 |
|
327 |
Args:
|
328 |
video_url (str): The URL of the YouTube video.
|
329 |
"""
|
|
|
330 |
try:
|
331 |
ydl_opts = {
|
332 |
"quiet": True,
|
@@ -347,9 +448,36 @@ def get_youtube_video_info(video_url: str) -> str:
|
|
347 |
video_info_str = "\n".join(
|
348 |
[f"{k}: {v}" for k, v in video_info_filtered.items()]
|
349 |
)
|
350 |
-
return video_info_str
|
351 |
except Exception as e:
|
352 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
|
354 |
|
355 |
def encode_image(image_path):
|
@@ -403,6 +531,7 @@ def ask_about_image(image_path: str, question: str) -> str:
|
|
403 |
return response.text()
|
404 |
|
405 |
|
|
|
406 |
def transcribe_audio(audio_path: str) -> str:
|
407 |
"""Transcribes audio to text.
|
408 |
|
@@ -411,7 +540,7 @@ def transcribe_audio(audio_path: str) -> str:
|
|
411 |
"""
|
412 |
model = whisper.load_model("base")
|
413 |
result = model.transcribe(audio_path)
|
414 |
-
text = result.text
|
415 |
return text
|
416 |
|
417 |
|
@@ -448,9 +577,8 @@ def get_table_description(table: pd.DataFrame) -> str:
|
|
448 |
|
449 |
@tool
|
450 |
def inspect_file_as_text(file_path: str) -> str:
|
451 |
-
"""This tool reads a file as markdown text. It handles [".csv", ".xlsx", ".pptx", ".
|
452 |
-
|
453 |
-
HANDLE IMAGES.
|
454 |
|
455 |
Args:
|
456 |
file_path (str): The path to the file you want to read as text. If it is an image, use `vision_qa` tool.
|
@@ -462,7 +590,11 @@ def inspect_file_as_text(file_path: str) -> str:
|
|
462 |
raise Exception(
|
463 |
"Cannot use inspect_file_as_text tool with images: use `vision_qa` tool instead!"
|
464 |
)
|
465 |
-
|
|
|
|
|
|
|
|
|
466 |
if suffix == ".csv":
|
467 |
df = pd.read_csv(file_path)
|
468 |
elif suffix == ".tsv":
|
@@ -482,8 +614,6 @@ def inspect_file_as_text(file_path: str) -> str:
|
|
482 |
elif suffix == ".docx":
|
483 |
doc = UnstructuredWordDocumentLoader(file_path)
|
484 |
return doc.load()[0].page_content
|
485 |
-
elif suffix in [".wav", ".mp3", ".m4a", ".flac"]:
|
486 |
-
return transcribe_audio(file_path)
|
487 |
else:
|
488 |
# All other text files
|
489 |
with open(file_path, "r", encoding="utf-8") as file:
|
|
|
1 |
import base64
|
2 |
+
import json
|
3 |
import os
|
4 |
+
import re
|
5 |
+
from typing import Optional, Dict
|
6 |
|
7 |
import pandas as pd
|
8 |
import requests
|
|
|
13 |
from dotenv import find_dotenv, load_dotenv
|
14 |
from langchain.chains import RetrievalQA
|
15 |
from langchain.chat_models import init_chat_model
|
16 |
+
from langchain.schema import Document
|
17 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
18 |
from langchain_community.document_loaders import (
|
19 |
UnstructuredPDFLoader, UnstructuredPowerPointLoader,
|
20 |
UnstructuredWordDocumentLoader, WebBaseLoader)
|
21 |
+
from langchain_community.tools import DuckDuckGoSearchResults, GoogleSearchResults
|
22 |
+
from langchain_community.utilities import GoogleSerperAPIWrapper
|
23 |
+
from langchain_community.vectorstores import FAISS
|
24 |
from langchain_core.prompts import ChatPromptTemplate
|
25 |
from langchain_core.tools import tool
|
|
|
|
|
|
|
26 |
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
|
27 |
+
from langchain_tavily import TavilySearch
|
28 |
from markdownify import markdownify as md
|
29 |
from youtube_transcript_api import YouTubeTranscriptApi
|
30 |
from yt_dlp import YoutubeDL
|
|
|
208 |
return str(main or soup)
|
209 |
|
210 |
|
211 |
+
def fetch_page_markdown(page_key: str, lang: str="en") -> str:
|
212 |
+
"""Fetches the page HTML and returns the <body> as Markdown.
|
213 |
+
Args:
|
214 |
+
page_key (str): The unique key of the Wikipedia page.
|
215 |
+
lang (str): The language code for the Wikipedia edition to fetch (default: "en").
|
216 |
+
"""
|
217 |
+
url = f"https://api.wikimedia.org/core/v1/wikipedia/{lang}/page/{page_key}/html"
|
218 |
+
resp = requests.get(url, timeout=15)
|
219 |
+
resp.raise_for_status()
|
220 |
+
html = clean_html(resp.text) # Optional, but recommended: clean the HTML to remove unwanted sections
|
221 |
+
|
222 |
+
markdown = md(
|
223 |
+
html,
|
224 |
+
heading_style="ATX",
|
225 |
+
bullets="*+-",
|
226 |
+
table_infer_header=True,
|
227 |
+
strip=['a', 'span']
|
228 |
+
)
|
229 |
+
return markdown
|
230 |
+
|
231 |
+
|
232 |
+
def get_wikipedia_article(query: str) -> Dict[str, str]:
|
233 |
"""Fetches a Wikipedia article for a given query and returns its content in Markdown format.
|
234 |
|
235 |
Args:
|
236 |
query (str): The search query.
|
|
|
237 |
"""
|
238 |
headers = {
|
239 |
'User-Agent': 'MyLLMAgent ([email protected])'
|
240 |
}
|
241 |
|
242 |
# Step 1: Search
|
243 |
+
search_url = f"https://api.wikimedia.org/core/v1/wikipedia/en/search/page"
|
244 |
search_params = {'q': query, 'limit': 1}
|
245 |
search_response = requests.get(search_url, headers=headers, params=search_params, timeout=15)
|
246 |
|
247 |
if search_response.status_code != 200:
|
248 |
+
raise Exception(f"Search error: {search_response.status_code} - {search_response.text}")
|
249 |
|
250 |
results = search_response.json().get("pages", [])
|
251 |
if not results:
|
252 |
+
raise Exception(f"No results found for query: {query}")
|
253 |
|
254 |
page = results[0]
|
255 |
page_key = page["key"]
|
256 |
|
257 |
# Step 2: Get the wiki page, only keep relevant content and convert to Markdown
|
258 |
+
markdown = fetch_page_markdown(page_key)
|
259 |
+
return {
|
260 |
+
"page_key": page_key,
|
261 |
+
"markdown": markdown,
|
262 |
+
}
|
263 |
|
|
|
264 |
|
265 |
+
def parse_sections(markdown_text: str) -> Dict[str, Dict]:
|
266 |
+
"""
|
267 |
+
Parses markdown into a nested dict:
|
268 |
+
{ section_title: {
|
269 |
+
"full": full_section_md,
|
270 |
+
"subsections": { sub_title: sub_md, ... }
|
271 |
+
}, ... }
|
272 |
+
"""
|
273 |
+
# First split top-level sections
|
274 |
+
top_pat = re.compile(r"^##\s+(.*)$", re.MULTILINE)
|
275 |
+
top_matches = list(top_pat.finditer(markdown_text))
|
276 |
+
sections: Dict[str, Dict] = {}
|
277 |
+
for i, m in enumerate(top_matches):
|
278 |
+
sec_title = m.group(1).strip()
|
279 |
+
start = m.start()
|
280 |
+
end = top_matches[i+1].start() if i+1 < len(top_matches) else len(markdown_text)
|
281 |
+
sec_md = markdown_text[start:end].strip()
|
282 |
+
|
283 |
+
# Now split subsections within this block
|
284 |
+
sub_pat = re.compile(r"^###\s+(.*)$", re.MULTILINE)
|
285 |
+
subs: Dict[str, str] = {}
|
286 |
+
sub_matches = list(sub_pat.finditer(sec_md))
|
287 |
+
for j, sm in enumerate(sub_matches):
|
288 |
+
sub_title = sm.group(1).strip()
|
289 |
+
sub_start = sm.start()
|
290 |
+
sub_end = sub_matches[j+1].start() if j+1 < len(sub_matches) else len(sec_md)
|
291 |
+
subs[sub_title] = sec_md[sub_start:sub_end].strip()
|
292 |
+
|
293 |
+
sections[sec_title] = {"full": sec_md, "subsections": subs}
|
294 |
+
return sections
|
295 |
|
296 |
|
297 |
@tool
|
298 |
+
def wiki_search_qa(query: str, question: str) -> str:
|
299 |
"""Searches Wikipedia for a specific article and answers a question based on its content.
|
300 |
|
301 |
The function retrieves a Wikipedia article based on the provided query, converts it to Markdown,
|
|
|
304 |
Args:
|
305 |
query (str): A concise topic name with optional keywords, ideally matching the relevant Wikipedia page title.
|
306 |
question (str): The question to answer using the article.
|
|
|
307 |
"""
|
308 |
+
article = get_wikipedia_article(query)
|
309 |
+
markdown = article["markdown"]
|
310 |
qa = get_retrieval_qa(markdown)
|
311 |
return qa.invoke(question)
|
312 |
|
313 |
|
314 |
@tool
|
315 |
+
def wiki_search_article(query: str) -> str:
|
316 |
+
"""Search Wikipedia and return page_key plus a full table of contents (sections + subsections).
|
317 |
+
|
318 |
+
Args:
|
319 |
+
query (str): A concise topic name with optional keywords, ideally matching the relevant Wikipedia page title.
|
320 |
+
"""
|
321 |
+
article = get_wikipedia_article(query)
|
322 |
+
page_key = article["page_key"]
|
323 |
+
markdown = article["markdown"]
|
324 |
+
sections = parse_sections(markdown)
|
325 |
+
toc = [
|
326 |
+
{"section": sec, "subsections": list(info["subsections"].keys())}
|
327 |
+
for sec, info in sections.items()
|
328 |
+
]
|
329 |
+
return json.dumps({"page_key": page_key, "toc": toc})
|
330 |
+
|
331 |
+
|
332 |
+
@tool
|
333 |
+
def wiki_get_section(
|
334 |
+
page_key: str, section: str, subsection: Optional[str] = None
|
335 |
+
) -> str:
|
336 |
+
"""
|
337 |
+
Fetches the Markdown for a given top-level section or an optional subsection.
|
338 |
+
|
339 |
+
Args:
|
340 |
+
page_key: the article’s key (from wiki_search)
|
341 |
+
section: one of the top-level headings (## ...)
|
342 |
+
subsection: an optional subheading (### ...) under that section
|
343 |
+
|
344 |
+
Returns:
|
345 |
+
Markdown string of either the entire section or just the named subsection.
|
346 |
+
"""
|
347 |
+
page_key = page_key.strip().replace(" ", "_")
|
348 |
+
markdown = fetch_page_markdown(page_key)
|
349 |
+
sections = parse_sections(markdown)
|
350 |
+
|
351 |
+
sec_info = sections.get(section)
|
352 |
+
if not sec_info:
|
353 |
+
return f"Error: section '{section}' not found."
|
354 |
+
|
355 |
+
if subsection:
|
356 |
+
sub_md = sec_info["subsections"].get(subsection)
|
357 |
+
if not sub_md:
|
358 |
+
return f"Error: subsection '{subsection}' not found under '{section}'."
|
359 |
+
return sub_md
|
360 |
+
|
361 |
+
# no subsection requested → return the full section (with all its subsections)
|
362 |
+
return sec_info["full"]
|
363 |
+
|
364 |
+
|
365 |
+
@tool
|
366 |
+
def web_search(query: str, max_results: int = 5) -> str:
|
367 |
+
"""Searches the web for a given query and returns relevant results.
|
368 |
|
369 |
Args:
|
370 |
query (str): The search query.
|
371 |
+
max_results (int): The maximum number of results to return. Default is 5.
|
372 |
"""
|
373 |
+
if os.getenv("SERPER_API_KEY"):
|
374 |
+
# Preferred choice: Use Google Serper API for search
|
375 |
+
search_tool = GoogleSerperAPIWrapper()
|
376 |
+
results_dict = search_tool.results(query)
|
377 |
+
results = "\n".join(
|
378 |
+
[
|
379 |
+
f"Title: {result['title']}\n"
|
380 |
+
f"URL: {result['link']}\n"
|
381 |
+
f"Content: {result['snippet']}\n"
|
382 |
+
for result in results_dict["organic"][:max_results]
|
383 |
+
]
|
384 |
+
)
|
385 |
+
elif os.getenv("TAVILY_API_KEY"):
|
386 |
+
search_tool = TavilySearch(
|
387 |
+
max_results=max_results,
|
388 |
+
topic="general",
|
389 |
+
)
|
390 |
+
results_dict = search_tool.invoke(query)
|
391 |
+
results = "\n".join(
|
392 |
+
[
|
393 |
+
f"Title: {result['title']}\n"
|
394 |
+
f"URL: {result['url']}\n"
|
395 |
+
f"Content: {result['content']}\n"
|
396 |
+
for result in results_dict["results"]
|
397 |
+
]
|
398 |
+
)
|
399 |
+
else:
|
400 |
+
search_tool = DuckDuckGoSearchResults()
|
401 |
+
results = search_tool.invoke(query)
|
402 |
if results:
|
403 |
return results
|
404 |
else:
|
|
|
420 |
return "No content found."
|
421 |
|
422 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
423 |
@tool
|
424 |
def get_youtube_video_info(video_url: str) -> str:
|
425 |
+
"""Fetches information about a YouTube video and its transcript if it is available.
|
426 |
|
427 |
Args:
|
428 |
video_url (str): The URL of the YouTube video.
|
429 |
"""
|
430 |
+
# Get information about the video using yt-dlp
|
431 |
try:
|
432 |
ydl_opts = {
|
433 |
"quiet": True,
|
|
|
448 |
video_info_str = "\n".join(
|
449 |
[f"{k}: {v}" for k, v in video_info_filtered.items()]
|
450 |
)
|
|
|
451 |
except Exception as e:
|
452 |
+
print(f"Error fetching video info: {e}")
|
453 |
+
video_info_str = ""
|
454 |
+
try:
|
455 |
+
video_id = video_url.split("v=")[-1]
|
456 |
+
ytt_api = YouTubeTranscriptApi()
|
457 |
+
# We could add the option to load the transcript in a specific language
|
458 |
+
transcript = ytt_api.fetch(video_id)
|
459 |
+
sentences = []
|
460 |
+
for t in transcript:
|
461 |
+
start = t.start
|
462 |
+
end = start + t.duration
|
463 |
+
sentences.append(f"{start:.2f} - {end:.2f}: {t.text}")
|
464 |
+
transcript_with_timestamps = "\n".join(sentences)
|
465 |
+
except Exception as e:
|
466 |
+
print(f"Error fetching transcript: {e}")
|
467 |
+
transcript_with_timestamps = ""
|
468 |
+
|
469 |
+
# Check if neither piece of data was fetched
|
470 |
+
if not video_info_str and not transcript_with_timestamps:
|
471 |
+
return "Could not fetch video information or transcript."
|
472 |
+
|
473 |
+
# Use fallbacks for whichever is missing
|
474 |
+
info = video_info_str or "Video information not available."
|
475 |
+
transcript_section = (
|
476 |
+
f"\n\nTranscript:\n{transcript_with_timestamps}"
|
477 |
+
if transcript_with_timestamps
|
478 |
+
else "\n\nTranscript not available."
|
479 |
+
)
|
480 |
+
return f"{info}{transcript_section}"
|
481 |
|
482 |
|
483 |
def encode_image(image_path):
|
|
|
531 |
return response.text()
|
532 |
|
533 |
|
534 |
+
@tool
|
535 |
def transcribe_audio(audio_path: str) -> str:
|
536 |
"""Transcribes audio to text.
|
537 |
|
|
|
540 |
"""
|
541 |
model = whisper.load_model("base")
|
542 |
result = model.transcribe(audio_path)
|
543 |
+
text = result.get("text")
|
544 |
return text
|
545 |
|
546 |
|
|
|
577 |
|
578 |
@tool
|
579 |
def inspect_file_as_text(file_path: str) -> str:
|
580 |
+
"""This tool reads a file as markdown text. It handles [".csv", ".xlsx", ".pptx", ".pdf", ".docx"],
|
581 |
+
and all other types of text files. IT DOES NOT HANDLE IMAGES.
|
|
|
582 |
|
583 |
Args:
|
584 |
file_path (str): The path to the file you want to read as text. If it is an image, use `vision_qa` tool.
|
|
|
590 |
raise Exception(
|
591 |
"Cannot use inspect_file_as_text tool with images: use `vision_qa` tool instead!"
|
592 |
)
|
593 |
+
elif suffix in [".mp3", ".wav", ".flac", ".m4a"]:
|
594 |
+
raise Exception(
|
595 |
+
"Cannot use inspect_file_as_text tool with audio files: use `transcribe_audio` tool instead!"
|
596 |
+
)
|
597 |
+
elif suffix in [".csv", ".tsv", ".xlsx"]:
|
598 |
if suffix == ".csv":
|
599 |
df = pd.read_csv(file_path)
|
600 |
elif suffix == ".tsv":
|
|
|
614 |
elif suffix == ".docx":
|
615 |
doc = UnstructuredWordDocumentLoader(file_path)
|
616 |
return doc.load()[0].page_content
|
|
|
|
|
617 |
else:
|
618 |
# All other text files
|
619 |
with open(file_path, "r", encoding="utf-8") as file:
|