from typing import Annotated, Optional, TypedDict from dotenv import find_dotenv, load_dotenv from langchain.chat_models import init_chat_model from langchain_core.messages import AnyMessage, HumanMessage from langgraph.graph.message import add_messages from langgraph.prebuilt import create_react_agent from tools import (add, ask_about_image, divide, get_current_time_and_date, get_sum, get_weather_info, get_youtube_transcript, get_youtube_video_info, inspect_file_as_text, multiply, reverse_text, subtract, visit_website, web_search, wiki_search) class AgentState(TypedDict): input_file: Optional[str] # Contains file path messages: Annotated[list[AnyMessage], add_messages] class BasicAgent: def __init__(self): load_dotenv(find_dotenv()) model = init_chat_model("groq:meta-llama/llama-4-scout-17b-16e-instruct") system_prompt = ( "You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer " "with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR " "as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a " "number, don't use comma to write your number neither use units such as $ or percent sign unless specified " "otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), " "and write the digits in plain text unless specified otherwise. If you are asked for a comma separated " "list, apply the above rules depending of whether the element to be put in the list is a number or a string." "Give it all you can: I know for a fact that you have access to all the relevant tools to solve it and find " "the correct answer (the answer does exist). Failure or 'I cannot answer' or 'None found' will not be " "tolerated, success will be rewarded. Run verification steps if that's needed, you must make sure you find " "the correct answer! " ) tools = [ get_weather_info, add, get_sum, subtract, multiply, divide, get_current_time_and_date, wiki_search, web_search, visit_website, inspect_file_as_text, ask_about_image, reverse_text, get_youtube_video_info, get_youtube_transcript, ] self.agent = create_react_agent(model=model, tools=tools, prompt=system_prompt) print("BasicAgent initialized.") def __call__(self, question: str) -> str: print(f"Agent received question (first 50 chars): {question[:50]}...") messages = [HumanMessage(content=question)] response = self.agent.invoke({"messages": messages}) response_string = response["messages"][-1].content print(f"Agent's response: {response_string}") return response_string