import base64 import os from datetime import datetime import pandas as pd import requests import whisper import wikipedia from dotenv import find_dotenv, load_dotenv from langchain.chat_models import init_chat_model from langchain_community.document_loaders import ( UnstructuredPDFLoader, UnstructuredPowerPointLoader, UnstructuredWordDocumentLoader, WebBaseLoader) from langchain_community.tools import DuckDuckGoSearchRun from langchain_core.prompts import ChatPromptTemplate from langchain_core.tools import tool from youtube_transcript_api import YouTubeTranscriptApi from yt_dlp import YoutubeDL @tool def get_weather_info(location: str) -> str: """Fetches dummy weather information for a given location. Usage: ``` # Initialize the tool weather_info_tool = Tool( name="get_weather_info", func=get_weather_info, description="Fetches weather information for a given location.") ``` """ load_dotenv(find_dotenv()) api_key = os.getenv("OPENWEATHERMAP_API_KEY") url = ( f"https://api.openweathermap.org/data/2.5/" f"weather?q={location}&appid={api_key}&units=metric" ) res = requests.get(url, timeout=15) data = res.json() humidity = data["main"]["humidity"] pressure = data["main"]["pressure"] wind = data["wind"]["speed"] description = data["weather"][0]["description"] temp = data["main"]["temp"] min_temp = data["main"]["temp_min"] max_temp = data["main"]["temp_max"] return ( f"Weather in {location}: {description}, " f"Temperature: {temp}°C, Min: {min_temp}°C, Max: {max_temp}°C, " f"Humidity: {humidity}%, Pressure: {pressure} hPa, " f"Wind Speed: {wind} m/s" ) @tool def add(a: int, b: int) -> int: """Adds two numbers together. Args: a (int): The first number. b (int): The second number. """ return a + b @tool def get_sum(list_of_numbers: list[int]) -> int: """Sums a list of numbers. Args: list_of_numbers (list[int]): The list of numbers to sum. """ return sum(list_of_numbers) @tool def subtract(a: int, b: int) -> int: """Subtracts the second number from the first. Args: a (int): The first number. b (int): The second number. """ return a - b @tool def multiply(a: int, b: int) -> int: """Multiplies two numbers together. Args: a (int): The first number. b (int): The second number. """ return a * b @tool def divide(a: int, b: int) -> float: """Divides the first number by the second. Args: a (int): The first number. b (int): The second number. """ if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def get_current_time_and_date() -> str: """Returns the current time and date in ISO format.""" return datetime.now().isoformat() @tool def reverse_text(text: str) -> str: """Reverses the given text. Args: text (str): The text to reverse. """ return text[::-1] @tool def wiki_search(query: str) -> str: """Searches Wikipedia for a given query and returns the summary. Args: query (str): The search query. """ search_results = wikipedia.search(query) if not search_results: return "No results found." page_title = search_results[0] summary = wikipedia.summary(page_title) # Alternatively wikipedia.page(page_title).content[:max_length] return f"Title: {page_title}\n\nSummary: {summary}" @tool def web_search(query: str) -> str: """Searches the web for a given query and returns the first result. Args: query (str): The search query. """ search_tool = DuckDuckGoSearchRun() results = search_tool.invoke(query) if results: return results else: return "No results found." @tool def visit_website(url: str) -> str: """Visits a website and returns the content. Args: url (str): The URL of the website to visit. """ loader = WebBaseLoader(url) documents = loader.load() if documents: return documents[0].page_content else: return "No content found." @tool def get_youtube_transcript(video_url: str, return_timestamps: bool = False) -> str: """Fetches the transcript of a YouTube video. Args: video_url (str): The URL of the YouTube video. return_timestamps (bool): If True, returns timestamps with the transcript. Otherwise, returns only the text. """ try: video_id = video_url.split("v=")[-1] transcript = YouTubeTranscriptApi.get_transcript(video_id) if return_timestamps: sentences = [] for t in transcript: start = t["start"] end = start + t["duration"] sentences.append(f"{start:.2f} - {end:.2f}: {t['text']}") return "\n".join(sentences) else: return "\n".join([t["text"] for t in transcript]) except Exception as e: return f"Error fetching transcript: {e}" @tool def get_youtube_video_info(video_url: str) -> str: """Fetches information about a YouTube video. Args: video_url (str): The URL of the YouTube video. """ try: ydl_opts = { "quiet": True, "skip_download": True, } with YoutubeDL(ydl_opts) as ydl: info = ydl.extract_info(video_url, download=False) video_info = { "Title": info.get("title"), "Description": info.get("description"), "Uploader": info.get("uploader"), "Upload date": info.get("upload_date"), "Duration": info.get("duration"), "View count": info.get("view_count"), "Like count": info.get("like_count"), } video_info_filtered = {k: v for k, v in video_info.items() if v is not None} video_info_str = "\n".join( [f"{k}: {v}" for k, v in video_info_filtered.items()] ) return video_info_str except Exception as e: return f"Error fetching video info: {e}" def encode_image(image_path): with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode("utf-8") @tool def ask_about_image(image_path: str, question: str) -> str: """Performs vision-based question answering on an image. Args: image_path (str): The path to the image file. question (str): Your question about the image, as a natural language sentence. Provide as much context as possible. """ load_dotenv(find_dotenv()) llm = init_chat_model("groq:meta-llama/llama-4-scout-17b-16e-instruct") prompt = ChatPromptTemplate( [ { "role": "user", "content": [ { "type": "text", "text": "Please write a concise caption for the image that helps answer the following question: {question}", }, { "type": "image_url", "image_url": { "url": "data:image/jpeg;base64,{base64_image}", }, }, ], } ] ) chain = prompt | llm response = chain.invoke( {"question": question, "base64_image": encode_image(image_path)} ) return response.text() def transcribe_audio(audio_path: str) -> str: """Transcribes audio to text. Args: audio_path (str): The path to the audio file. """ model = whisper.load_model("base") result = model.transcribe(audio_path) text = result.text return text def get_table_description(table: pd.DataFrame) -> str: """Generates a description of the table. If applicable, calculates sum and mean of numeric columns. Args: table (pd.DataFrame): The table to describe. """ if table.empty: return "The table is empty." description = [] total_sum = 0 for column in table.select_dtypes(include=[int, float]).columns: column_sum = table[column].sum() column_mean = table[column].mean() description.append( f"Column '{column}': Sum = {column_sum}, Mean = {column_mean:.2f}" ) total_sum += column_sum if total_sum: description.append(f"Total Sum of all numeric columns: {total_sum}") if description: description = "\n".join(description) else: description = "No numeric columns to summarize." # Add the number of rows and columns description += f"\n\nTable has {table.shape[0]} rows and {table.shape[1]} columns." df_as_markdown = table.to_markdown() description += f"\n\nTable:\n{df_as_markdown}" return description @tool def inspect_file_as_text(file_path: str) -> str: """This tool reads a file as markdown text. It handles [".csv", ".xlsx", ".pptx", ".wav", ".mp3", ".m4a", ".flac", ".pdf", ".docx"], and all other types of text files. IT DOES NOT HANDLE IMAGES. Args: file_path (str): The path to the file you want to read as text. If it is an image, use `vision_qa` tool. """ try: suffix = os.path.splitext(file_path)[-1] if suffix in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff"]: raise Exception( "Cannot use inspect_file_as_text tool with images: use `vision_qa` tool instead!" ) if suffix in [".csv", ".tsv", ".xlsx"]: if suffix == ".csv": df = pd.read_csv(file_path) elif suffix == ".tsv": df = pd.read_csv(file_path, sep="\t") elif suffix == ".xlsx": df = pd.read_excel(file_path) else: raise Exception(f"Unsupported file type: {suffix}") table_description = get_table_description(df) return table_description elif suffix == ".pptx": doc = UnstructuredPowerPointLoader(file_path) return doc.load()[0].page_content elif suffix == ".pdf": doc = UnstructuredPDFLoader(file_path) return doc.load()[0].page_content elif suffix == ".docx": doc = UnstructuredWordDocumentLoader(file_path) return doc.load()[0].page_content elif suffix in [".wav", ".mp3", ".m4a", ".flac"]: return transcribe_audio(file_path) else: # All other text files with open(file_path, "r", encoding="utf-8") as file: content = file.read() return content except Exception as e: return f"Error file: {e}"