import gradio as gr from PIL import Image, ImageDraw, ImageFont import random import pandas as pd import numpy as np from datasets import concatenate_datasets from operator import itemgetter import collections # download datasets from datasets import load_dataset dataset_small = load_dataset("pierreguillou/DocLayNet-small") dataset_base = load_dataset("pierreguillou/DocLayNet-base") id2label = {idx:label for idx,label in enumerate(dataset_small["train"].features["categories"].feature.names)} labels = [label for idx, label in id2label.items()] # need to change the coordinates format def convert_box(box): x, y, w, h = tuple(box) # the row comes in (left, top, width, height) format actual_box = [x, y, x+w, y+h] # we turn it into (left, top, left+widght, top+height) to get the actual box return actual_box # get back original size def original_box(box, original_width, original_height, coco_width, coco_height): return [ int(original_width * (box[0] / coco_width)), int(original_height * (box[1] / coco_height)), int(original_width * (box[2] / coco_width)), int(original_height* (box[3] / coco_height)), ] # function to sort bounding boxes def get_sorted_boxes(bboxes): # sort by y from page top to bottom bboxes = sorted(bboxes, key=itemgetter(1), reverse=False) y_list = [bbox[1] for bbox in bboxes] # sort by x from page left to right when boxes with same y if len(list(set(y_list))) != len(y_list): y_list_duplicates_indexes = dict() y_list_duplicates = [item for item, count in collections.Counter(y_list).items() if count > 1] for item in y_list_duplicates: y_list_duplicates_indexes[item] = [i for i, e in enumerate(y_list) if e == item] bbox_list_y_duplicates = sorted(np.array(bboxes)[y_list_duplicates_indexes[item]].tolist(), key=itemgetter(0), reverse=False) np_array_bboxes = np.array(bboxes) np_array_bboxes[y_list_duplicates_indexes[item]] = np.array(bbox_list_y_duplicates) bboxes = np_array_bboxes.tolist() return bboxes # categories colors label2color = { 'Caption': 'brown', 'Footnote': 'orange', 'Formula': 'gray', 'List-item': 'yellow', 'Page-footer': 'red', 'Page-header': 'red', 'Picture': 'violet', 'Section-header': 'orange', 'Table': 'green', 'Text': 'blue', 'Title': 'pink' } # image witout content examples_dir = 'samples/' images_wo_content = examples_dir + "wo_content.png" df_paragraphs_wo_content, df_lines_wo_content = pd.DataFrame(), pd.DataFrame() df_paragraphs_wo_content["paragraphs"] = [0] df_paragraphs_wo_content["categories"] = ["no content"] df_paragraphs_wo_content["texts"] = ["no content"] df_paragraphs_wo_content["bounding boxes"] = ["no content"] df_lines_wo_content["lines"] = [0] df_lines_wo_content["categories"] = ["no content"] df_lines_wo_content["texts"] = ["no content"] df_lines_wo_content["bounding boxes"] = ["no content"] # lists font = ImageFont.load_default() dataset_names = ["small", "base"] splits = ["all", "train", "validation", "test"] domains = ["all", "Financial Reports", "Manuals", "Scientific Articles", "Laws & Regulations", "Patents", "Government Tenders"] domains_names = [domain_name.lower().replace(" ", "_") for domain_name in domains] categories = labels + ["all"] # function to get a rendom image and all data from DocLayNet def generate_annotated_image(dataset_name, split, domain, category): def get_dataset(dataset_name, split, domain, category): # error message msg_error = "" # get dataset if dataset_name == "small": example = dataset_small else: example = dataset_base # get split if split == "all": example = concatenate_datasets([example["train"], example["validation"], example["test"]]) else: example = example[split] # get domain domain_name = domains_names[domains.index(domain)] if domain_name != "all": example = example.filter(lambda example: example["doc_category"] == domain_name) if len(example) == 0: msg_error = f'There is no image with at least one annotated bounding box that matches to your parameters ("{domain}" domain / "DocLayNet {dataset_name}" dataset splitted into "{split}").' example = dict() return example, msg_error # get category idx_list = list() if category != "all": for idx, categories_list in zip(example["id"], example["categories"]): if category in categories_list: idx_list.append(idx) example = example.select(idx_list) if len(example) == 0: msg_error = f'There is no image with at least one annotated bounding box that matches to your parameters (category: "{category}" / domain: "{domain}" / dataset: "DocLayNet {dataset_name}" / split: "{split}").' example = dict() return example, msg_error return example, msg_error # get results example, msg_error = get_dataset(dataset_name, split, domain, category) if len(msg_error) > 0: return msg_error, images_wo_content, images_wo_content, df_paragraphs_wo_content, df_lines_wo_content else: # get random image & PDF data image_files = example["image"] index = random.randint(0, len(image_files)) image = image_files[index] # original image coco_width, coco_height = example[index]["coco_width"], example[index]["coco_height"] original_width, original_height = example[index]["original_width"], example[index]["original_height"] original_filename = example[index]["original_filename"] page_no = example[index]["page_no"] num_pages = example[index]["num_pages"] # resize image to original image = image.resize((original_width, original_height)) # get corresponding annotations texts = example[index]["texts"] bboxes_block = example[index]["bboxes_block"] bboxes_line = example[index]["bboxes_line"] categories = example[index]["categories"] domain = example[index]["doc_category"] # get list of categories categories_unique = sorted(list(set([categories_list for categories_list in categories]))) categories_unique = [id2label[idx] for idx in categories_unique] # convert boxes to original original_bboxes_block = [original_box(convert_box(box), original_width, original_height, coco_width, coco_height) for box in bboxes_block] original_bboxes_line = [original_box(convert_box(box), original_width, original_height, coco_width, coco_height) for box in bboxes_line] original_bboxes = [original_bboxes_block, original_bboxes_line] ##### block boxes ##### # get list of unique block boxes original_blocks = dict() original_bboxes_block_list = list() original_bbox_block_prec = list() for count_block, original_bbox_block in enumerate(original_bboxes_block): if original_bbox_block != original_bbox_block_prec: original_bbox_block_indexes = [i for i, original_bbox in enumerate(original_bboxes_block) if original_bbox == original_bbox_block] original_blocks[count_block] = original_bbox_block_indexes original_bboxes_block_list.append(original_bbox_block) original_bbox_block_prec = original_bbox_block # get list of categories and texts by unique block boxes category_block_list, text_block_list = list(), list() for original_bbox_block in original_bboxes_block_list: count_block = original_bboxes_block.index(original_bbox_block) original_bbox_block_indexes = original_blocks[count_block] category_block = categories[original_bbox_block_indexes[0]] category_block_list.append(category_block) if id2label[category_block] == "Text" or id2label[category_block] == "Caption" or id2label[category_block] == "Footnote": text_block = ' '.join(np.array(texts)[original_bbox_block_indexes].tolist()) elif id2label[category_block] == "Section-header" or id2label[category_block] == "Title" or id2label[category_block] == "Picture" or id2label[category_block] == "Formula" or id2label[category_block] == "List-item" or id2label[category_block] == "Table" or id2label[category_block] == "Page-header" or id2label[category_block] == "Page-footer": text_block = '\n'.join(np.array(texts)[original_bbox_block_indexes].tolist()) text_block_list.append(text_block) # sort data from y = 0 to end of page (and after, x=0 to end of page when necessary) sorted_original_bboxes_block_list = get_sorted_boxes(original_bboxes_block_list) sorted_original_bboxes_block_list_indexes = [original_bboxes_block_list.index(item) for item in sorted_original_bboxes_block_list] sorted_category_block_list = np.array(category_block_list)[sorted_original_bboxes_block_list_indexes].tolist() sorted_text_block_list = np.array(text_block_list)[sorted_original_bboxes_block_list_indexes].tolist() ##### line boxes #### # sort data from y = 0 to end of page (and after, x=0 to end of page when necessary) original_bboxes_line_list = original_bboxes_line category_line_list = categories text_line_list = texts sorted_original_bboxes_line_list = get_sorted_boxes(original_bboxes_line_list) sorted_original_bboxes_line_list_indexes = [original_bboxes_line_list.index(item) for item in sorted_original_bboxes_line_list] sorted_category_line_list = np.array(category_line_list)[sorted_original_bboxes_line_list_indexes].tolist() sorted_text_line_list = np.array(text_line_list)[sorted_original_bboxes_line_list_indexes].tolist() # setup images & PDf data columns = 2 images = [image.copy(), image.copy()] num_imgs = len(images) imgs, df_paragraphs, df_lines = dict(), pd.DataFrame(), pd.DataFrame() for i, img in enumerate(images): draw = ImageDraw.Draw(img) for box, label_idx, text in zip(original_bboxes[i], categories, texts): label = id2label[label_idx] color = label2color[label] draw.rectangle(box, outline=color) text = text.encode('latin-1', 'replace').decode('latin-1') # https://stackoverflow.com/questions/56761449/unicodeencodeerror-latin-1-codec-cant-encode-character-u2013-writing-to draw.text((box[0] + 10, box[1] - 10), text=label, fill=color, font=font) if i == 0: imgs["paragraphs"] = img df_paragraphs["paragraphs"] = list(range(len(sorted_original_bboxes_block_list))) df_paragraphs["categories"] = [id2label[label_idx] for label_idx in sorted_category_block_list] df_paragraphs["texts"] = sorted_text_block_list df_paragraphs["bounding boxes"] = [str(bbox) for bbox in sorted_original_bboxes_block_list] else: imgs["lines"] = img df_lines["lines"] = list(range(len(sorted_original_bboxes_line_list))) df_lines["categories"] = [id2label[label_idx] for label_idx in sorted_category_line_list] df_lines["texts"] = sorted_text_line_list df_lines["bounding boxes"] = [str(bbox) for bbox in sorted_original_bboxes_line_list] msg = f'The page {page_no} of PDF "{original_filename}" (domain "{domain}") matches your parameters.' return msg, imgs["paragraphs"], imgs["lines"], df_paragraphs, df_lines # gradio APP with gr.Blocks(title="DocLayNet image viewer", css=".gradio-container") as demo: gr.HTML("""

DocLayNet image viewer

(01/29/2023) This APP is an image viewer of the DocLayNet dataset.

It uses the dataset DocLayNet small (in the corresponding notebook, the DocLayNet base is used, too).

Make your parameters selections and the output will show 2 images of a randomly selected PDF with annotated bounding boxes, one of paragraphs and the other of lines, and a table of texts with their labels.

""") with gr.Row(): with gr.Column(): dataset_name_gr = gr.Radio(["small"], value="small", label="DocLayNet dataset") with gr.Column():" split_gr = gr.Dropdown(splits, value="all", label="Split") with gr.Column(): domain_gr = gr.Dropdown(domains, value="all", label="Domain") with gr.Column(): category_gr = gr.Dropdown(categories, value="all", label="Category") btn = gr.Button("Display PDF image") with gr.Row(): output_msg = gr.Textbox(label="Output message") with gr.Row(): # with gr.Column(): # json = gr.JSON(label="JSON") with gr.Column(): img_paragraphs = gr.Image(type="pil", label="Bounding boxes of labeled paragraphs") with gr.Column(): img_lines = gr.Image(type="pil", label="Bounding boxes of labeled lines") with gr.Row(): with gr.Column(): df_paragraphs = gr.Dataframe( headers=["paragraphs", "categories", "texts", "bounding boxes"], datatype=["number", "str", "str", "str"], # row_count='dynamic', col_count=(4, "fixed"), interactive=False, label="Paragraphs data", type="pandas", wrap=True ) with gr.Column(): df_lines = gr.Dataframe( headers=["lines", "categories", "texts", "bounding boxes"], datatype=["number", "str", "str", "str"], # row_count='dynamic', col_count=(4, "fixed"), interactive=False, label="Lines data", type="pandas", wrap=True ) btn.click(generate_annotated_image, inputs=[dataset_name_gr, split_gr, domain_gr, category_gr], outputs=[output_msg, img_paragraphs, img_lines, df_paragraphs, df_lines]) gr.Markdown("## Example") gr.Examples( [["small", "all", "all", "all"]], [dataset_name_gr, split_gr, domain_gr, category_gr], [output_msg, img_paragraphs, img_lines, df_paragraphs, df_lines], fn=generate_annotated_image, cache_examples=True, ) demo.launch(share=True)