initial commit
Browse files- .gitignore +7 -0
- Dockerfile +17 -0
- README.md +18 -5
- docker-compose.yaml +15 -0
- requirements.txt +8 -0
- src/main.py +303 -0
.gitignore
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# local config
|
| 2 |
+
docker-compose.override.yaml
|
| 3 |
+
|
| 4 |
+
# PhpStorm / IDEA
|
| 5 |
+
.idea
|
| 6 |
+
# NetBeans
|
| 7 |
+
nbproject
|
Dockerfile
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.9
|
| 2 |
+
|
| 3 |
+
RUN useradd -m -u 1000 user
|
| 4 |
+
USER user
|
| 5 |
+
|
| 6 |
+
ENV HOME=/home/user \
|
| 7 |
+
PATH=/home/user/.local/bin:$PATH
|
| 8 |
+
|
| 9 |
+
WORKDIR $HOME/app
|
| 10 |
+
|
| 11 |
+
COPY --chown=user requirements.txt requirements.txt
|
| 12 |
+
|
| 13 |
+
RUN pip install --upgrade -r requirements.txt
|
| 14 |
+
|
| 15 |
+
COPY --chown=user . .
|
| 16 |
+
|
| 17 |
+
CMD ["uvicorn", "src.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
CHANGED
|
@@ -1,12 +1,25 @@
|
|
| 1 |
---
|
| 2 |
title: Local Inference Service
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
license: other
|
| 9 |
-
short_description: This services allows HF inference provider compatible infere
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
title: Local Inference Service
|
| 3 |
+
emoji: 🦀
|
| 4 |
+
colorFrom: green
|
| 5 |
+
colorTo: yellow
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
license: other
|
|
|
|
| 9 |
---
|
| 10 |
|
| 11 |
+
# Pimcore Local Inference Service
|
| 12 |
+
|
| 13 |
+
This services allows HF inference provider compatible inference to models which are not available at HF inference providers.
|
| 14 |
+
|
| 15 |
+
## Supported Tasks / Models
|
| 16 |
+
|
| 17 |
+
- Zero-Shot Image Classification
|
| 18 |
+
- Translation
|
| 19 |
+
- Image To Text
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
|
docker-compose.yaml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
services:
|
| 2 |
+
server:
|
| 3 |
+
build:
|
| 4 |
+
context: .
|
| 5 |
+
ports:
|
| 6 |
+
- 7860:7860
|
| 7 |
+
develop:
|
| 8 |
+
watch:
|
| 9 |
+
- action: rebuild
|
| 10 |
+
path: .
|
| 11 |
+
volumes:
|
| 12 |
+
- python-cache:/home/user/.cache
|
| 13 |
+
|
| 14 |
+
volumes:
|
| 15 |
+
python-cache:
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi==0.111.*
|
| 2 |
+
requests==2.*
|
| 3 |
+
uvicorn[standard]==0.30.*
|
| 4 |
+
transformers
|
| 5 |
+
sentencepiece
|
| 6 |
+
sacremoses
|
| 7 |
+
torch
|
| 8 |
+
# Optional dependencies for specific features
|
src/main.py
ADDED
|
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -------------------------------------------------------------------
|
| 2 |
+
# This source file is available under the terms of the
|
| 3 |
+
# Pimcore Open Core License (POCL)
|
| 4 |
+
# Full copyright and license information is available in
|
| 5 |
+
# LICENSE.md which is distributed with this source code.
|
| 6 |
+
#
|
| 7 |
+
# @copyright Copyright (c) Pimcore GmbH (https://www.pimcore.com)
|
| 8 |
+
# @license Pimcore Open Core License (POCL)
|
| 9 |
+
# -------------------------------------------------------------------
|
| 10 |
+
|
| 11 |
+
import os
|
| 12 |
+
import torch
|
| 13 |
+
|
| 14 |
+
#from .training_status import Status
|
| 15 |
+
#from .environment_variable_checker import EnvironmentVariableChecker
|
| 16 |
+
|
| 17 |
+
#from .training_manager import TrainingManager
|
| 18 |
+
#from .image_classification.image_classification_trainer import ImageClassificationTrainer
|
| 19 |
+
#from .image_classification.image_classification_parameters import ImageClassificationParameters, map_image_classification_training_parameters, ImageClassificationTrainingParameters
|
| 20 |
+
#from .text_classification.text_classification_trainer import TextClassificationTrainer
|
| 21 |
+
#from .text_classification.text_classification_parameters import TextClassificationParameters, map_text_classification_training_parameters, TextClassificationTrainingParameters
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
from fastapi import FastAPI, Depends, HTTPException, UploadFile, Form, File, status
|
| 25 |
+
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
| 26 |
+
from pydantic import BaseModel
|
| 27 |
+
from typing import Annotated
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
import logging
|
| 31 |
+
from pathlib import Path
|
| 32 |
+
import tempfile
|
| 33 |
+
import sys
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
from transformers import pipeline
|
| 37 |
+
|
| 38 |
+
app = FastAPI(
|
| 39 |
+
title="Pimcore Local Inference Service",
|
| 40 |
+
description="This services allows HF inference provider compatible inference to models which are not available at HF inference providers.",
|
| 41 |
+
version="1.0.0"
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
#environmentVariableChecker = EnvironmentVariableChecker()
|
| 45 |
+
#environmentVariableChecker.validate_environment_variables()
|
| 46 |
+
|
| 47 |
+
logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s')
|
| 48 |
+
logger = logging.getLogger(__name__)
|
| 49 |
+
logger.setLevel(logging.DEBUG)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class StreamToLogger(object):
|
| 53 |
+
def __init__(self, logger, log_level):
|
| 54 |
+
self.logger = logger
|
| 55 |
+
self.log_level = log_level
|
| 56 |
+
self.linebuf = ''
|
| 57 |
+
|
| 58 |
+
def write(self, buf):
|
| 59 |
+
for line in buf.rstrip().splitlines():
|
| 60 |
+
self.logger.log(self.log_level, line.rstrip())
|
| 61 |
+
|
| 62 |
+
def flush(self):
|
| 63 |
+
pass
|
| 64 |
+
|
| 65 |
+
sys.stdout = StreamToLogger(logger, logging.INFO)
|
| 66 |
+
sys.stderr = StreamToLogger(logger, logging.ERROR)
|
| 67 |
+
|
| 68 |
+
#classification_trainer: TrainingManager = TrainingManager()
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
class ResponseModel(BaseModel):
|
| 72 |
+
""" Default response model for endpoints. """
|
| 73 |
+
message: str
|
| 74 |
+
success: bool = True
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# ===========================================
|
| 78 |
+
# Security Check
|
| 79 |
+
# ===========================================
|
| 80 |
+
|
| 81 |
+
# security = HTTPBearer()
|
| 82 |
+
# def verify_token(credentials: HTTPAuthorizationCredentials = Depends(security)):
|
| 83 |
+
# """Verify the token provided by the user."""
|
| 84 |
+
|
| 85 |
+
# token = environmentVariableChecker.get_authentication_token()
|
| 86 |
+
|
| 87 |
+
# if credentials.credentials != token:
|
| 88 |
+
# raise HTTPException(
|
| 89 |
+
# status_code=status.HTTP_401_UNAUTHORIZED,
|
| 90 |
+
# detail="Invalid token",
|
| 91 |
+
# headers={"WWW-Authenticate": "Bearer"},
|
| 92 |
+
# )
|
| 93 |
+
# return {"token": credentials.credentials}
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
# ===========================================
|
| 97 |
+
# Training Status Endpoints
|
| 98 |
+
# ===========================================
|
| 99 |
+
|
| 100 |
+
# @app.get("/get_training_status")
|
| 101 |
+
# async def get_task_status(token_data: dict = Depends(verify_token)):
|
| 102 |
+
# """ Get the status of the currently running training (if any). """
|
| 103 |
+
# status = classification_trainer.get_task_status()
|
| 104 |
+
# return {
|
| 105 |
+
# "project": status.get_project_name(),
|
| 106 |
+
# "progress": status.get_progress(),
|
| 107 |
+
# "task": status.get_task(),
|
| 108 |
+
# "status": status.get_status().value
|
| 109 |
+
# }
|
| 110 |
+
|
| 111 |
+
# @app.put("/stop_training")
|
| 112 |
+
# async def stop_task(token_data: dict = Depends(verify_token)):
|
| 113 |
+
# """ Stop the currently running training (if any). """
|
| 114 |
+
# try:
|
| 115 |
+
# status = classification_trainer.get_task_status()
|
| 116 |
+
# classification_trainer.stop_task()
|
| 117 |
+
# return ResponseModel(message=f"Training stopped for `{ status.get_project_name() }`")
|
| 118 |
+
# except Exception as e:
|
| 119 |
+
# raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
@app.get("/gpu_check")
|
| 123 |
+
async def gpu_check():
|
| 124 |
+
""" Check if a GPU is available """
|
| 125 |
+
|
| 126 |
+
gpu = 'GPU not available'
|
| 127 |
+
if torch.cuda.is_available():
|
| 128 |
+
gpu = 'GPU is available'
|
| 129 |
+
print("GPU is available")
|
| 130 |
+
else:
|
| 131 |
+
print("GPU is not available")
|
| 132 |
+
|
| 133 |
+
return {'success': True, 'gpu': gpu}
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
from fastapi import Body
|
| 137 |
+
from typing import Optional
|
| 138 |
+
|
| 139 |
+
class TranslationRequest(BaseModel):
|
| 140 |
+
inputs: str
|
| 141 |
+
parameters: Optional[dict] = None
|
| 142 |
+
|
| 143 |
+
@app.post(
|
| 144 |
+
"/translation/{model_name:path}/",
|
| 145 |
+
)
|
| 146 |
+
async def translation(
|
| 147 |
+
model_name: str,
|
| 148 |
+
body: TranslationRequest = Body(
|
| 149 |
+
...,
|
| 150 |
+
example={
|
| 151 |
+
"inputs": "I am a car",
|
| 152 |
+
"parameters": {
|
| 153 |
+
"repetition_penalty": 1.6,
|
| 154 |
+
}
|
| 155 |
+
}
|
| 156 |
+
)
|
| 157 |
+
):
|
| 158 |
+
"""
|
| 159 |
+
Execute translation tasks.
|
| 160 |
+
|
| 161 |
+
Args:
|
| 162 |
+
model_name (str): The HuggingFace model name to use for translation.
|
| 163 |
+
body (TranslationRequest): The request payload containing translation parameters.
|
| 164 |
+
|
| 165 |
+
Returns:
|
| 166 |
+
list: The translation result(s) as returned by the pipeline.
|
| 167 |
+
"""
|
| 168 |
+
|
| 169 |
+
try:
|
| 170 |
+
pipe = pipeline("translation", model=model_name)
|
| 171 |
+
except Exception as e:
|
| 172 |
+
logger.error(f"Failed to load model '{model_name}': {str(e)}")
|
| 173 |
+
raise HTTPException(
|
| 174 |
+
status_code=404,
|
| 175 |
+
detail=f"Model '{model_name}' could not be loaded: {str(e)}"
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
try:
|
| 179 |
+
result = pipe(body.inputs, **(body.parameters or {}))
|
| 180 |
+
except Exception as e:
|
| 181 |
+
logger.error(f"Inference failed for model '{model_name}': {str(e)}")
|
| 182 |
+
raise HTTPException(
|
| 183 |
+
status_code=500,
|
| 184 |
+
detail=f"Inference failed: {str(e)}"
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
return result
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
# ===========================================
|
| 191 |
+
# Fine-Tuning Image Classification
|
| 192 |
+
# ===========================================
|
| 193 |
+
|
| 194 |
+
# @app.post(
|
| 195 |
+
# "/training/image_classification",
|
| 196 |
+
# response_model=ResponseModel
|
| 197 |
+
# )
|
| 198 |
+
# async def image_classification(
|
| 199 |
+
# training_params: Annotated[ImageClassificationTrainingParameters, Depends(map_image_classification_training_parameters)],
|
| 200 |
+
# training_data_zip: Annotated[UploadFile, File(description="The ZIP file containing the training data, with a folder per class which contains images belonging to that class.")],
|
| 201 |
+
# token_data: dict = Depends(verify_token),
|
| 202 |
+
# project_name: str = Form(description="The name of the project. Will also be used as name of resulting model that will be created after fine tuning and as the name of the repository at huggingface."),
|
| 203 |
+
# source_model_name: str = Form('google/vit-base-patch16-224-in21k', description="The source model to be used as basis for fine tuning."),
|
| 204 |
+
# ):
|
| 205 |
+
# """
|
| 206 |
+
# Start fine tuning an image classification model with the provided data.
|
| 207 |
+
# """
|
| 208 |
+
|
| 209 |
+
# # check if training is running, if so then exit
|
| 210 |
+
# status = classification_trainer.get_task_status()
|
| 211 |
+
# if status.get_status() == Status.IN_PROGRESS or status.get_status() == Status.CANCELLING:
|
| 212 |
+
# raise HTTPException(status_code=405, detail="Training is already in progress.")
|
| 213 |
+
|
| 214 |
+
# # Ensure the uploaded file is a ZIP file
|
| 215 |
+
# if not training_data_zip.filename.endswith(".zip"):
|
| 216 |
+
# raise HTTPException(status_code=422, detail="Uploaded file is not a zip file.")
|
| 217 |
+
|
| 218 |
+
# try:
|
| 219 |
+
# # Create a temporary directory to extract the contents
|
| 220 |
+
# tmp_path = os.path.join(tempfile.gettempdir(), 'training_data')
|
| 221 |
+
# path = Path(tmp_path)
|
| 222 |
+
# path.mkdir(parents=True, exist_ok=True)
|
| 223 |
+
|
| 224 |
+
# contents = await training_data_zip.read()
|
| 225 |
+
# zip_path = os.path.join(tmp_path, 'image_classification_data.zip')
|
| 226 |
+
# with open(zip_path, 'wb') as temp_file:
|
| 227 |
+
# temp_file.write(contents)
|
| 228 |
+
|
| 229 |
+
# # prepare parameters
|
| 230 |
+
# parameters = ImageClassificationParameters(
|
| 231 |
+
# training_files_path=tmp_path,
|
| 232 |
+
# training_zip_file_path=zip_path,
|
| 233 |
+
# project_name=project_name,
|
| 234 |
+
# source_model_name=source_model_name,
|
| 235 |
+
# training_parameters=training_params
|
| 236 |
+
# )
|
| 237 |
+
|
| 238 |
+
# # start training
|
| 239 |
+
# await classification_trainer.start_training(ImageClassificationTrainer(), parameters)
|
| 240 |
+
|
| 241 |
+
# return ResponseModel(message="Training started.")
|
| 242 |
+
|
| 243 |
+
# except Exception as e:
|
| 244 |
+
# raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
# ===========================================
|
| 250 |
+
# Fine-Tuning Text Classification
|
| 251 |
+
# ===========================================
|
| 252 |
+
|
| 253 |
+
# @app.post(
|
| 254 |
+
# "/training/text_classification",
|
| 255 |
+
# response_model=ResponseModel
|
| 256 |
+
# )
|
| 257 |
+
# async def text_classificaiton(
|
| 258 |
+
# training_params: Annotated[TextClassificationTrainingParameters, Depends(map_text_classification_training_parameters)],
|
| 259 |
+
# training_data_csv: Annotated[UploadFile, File(description="The CSV file containing the training data, necessary columns `value` (text data) and `target` (classification).")],
|
| 260 |
+
# token_data: dict = Depends(verify_token),
|
| 261 |
+
# project_name: str = Form(description="The name of the project. Will also be used as name of resulting model that will be created after fine tuning and as the name of the repository at huggingface."),
|
| 262 |
+
# training_csv_limiter: str = Form(';', description="The delimiter used in the CSV file."),
|
| 263 |
+
# source_model_name: str = Form('distilbert/distilbert-base-uncased'),
|
| 264 |
+
# ):
|
| 265 |
+
# """Start fine tuning an text classification model with the provided data."""
|
| 266 |
+
|
| 267 |
+
# # check if training is running, if so then exit
|
| 268 |
+
# status = classification_trainer.get_task_status()
|
| 269 |
+
# if status.get_status() == Status.IN_PROGRESS or status.get_status() == Status.CANCELLING:
|
| 270 |
+
# raise HTTPException(status_code=405, detail="Training is already in progress")
|
| 271 |
+
|
| 272 |
+
# # Ensure the uploaded file is a CSV file
|
| 273 |
+
# if not training_data_csv.filename.endswith(".csv"):
|
| 274 |
+
# raise HTTPException(status_code=422, detail="Uploaded file is not a csv file.")
|
| 275 |
+
|
| 276 |
+
# try:
|
| 277 |
+
# # Create a temporary directory to extract the contents
|
| 278 |
+
# tmp_path = os.path.join(tempfile.gettempdir(), 'training_data')
|
| 279 |
+
# path = Path(tmp_path)
|
| 280 |
+
# path.mkdir(parents=True, exist_ok=True)
|
| 281 |
+
|
| 282 |
+
# contents = await training_data_csv.read()
|
| 283 |
+
# csv_path = os.path.join(tmp_path, 'data.csv')
|
| 284 |
+
# with open(csv_path, 'wb') as temp_file:
|
| 285 |
+
# temp_file.write(contents)
|
| 286 |
+
|
| 287 |
+
# # prepare parameters
|
| 288 |
+
# parameters = TextClassificationParameters(
|
| 289 |
+
# training_csv_file_path=csv_path,
|
| 290 |
+
# training_csv_limiter=training_csv_limiter,
|
| 291 |
+
# project_name=project_name,
|
| 292 |
+
# source_model_name=source_model_name,
|
| 293 |
+
# training_parameters=training_params
|
| 294 |
+
# )
|
| 295 |
+
|
| 296 |
+
# # start training
|
| 297 |
+
# await classification_trainer.start_training(TextClassificationTrainer(), parameters)
|
| 298 |
+
|
| 299 |
+
# return ResponseModel(message="Training started.")
|
| 300 |
+
|
| 301 |
+
# except Exception as e:
|
| 302 |
+
# raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
| 303 |
+
|