Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,80 +1,68 @@
|
|
| 1 |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
| 2 |
-
from utils import write_video, dummy
|
| 3 |
from PIL import Image
|
| 4 |
-
import
|
|
|
|
| 5 |
import os
|
| 6 |
os.environ["CUDA_VISIBLE_DEVICES"]="0"
|
| 7 |
-
import torch
|
| 8 |
-
import gradio as gr
|
| 9 |
|
| 10 |
|
| 11 |
-
orig_prompt = "
|
| 12 |
orig_negative_prompt = "lurry, bad art, blurred, text, watermark"
|
|
|
|
| 13 |
|
| 14 |
def stable_diffusion_zoom_out(
|
| 15 |
repo_id,
|
| 16 |
original_prompt,
|
| 17 |
negative_prompt,
|
| 18 |
-
|
| 19 |
num_frames,
|
| 20 |
-
fps
|
| 21 |
-
|
|
|
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
current_image = Image.new(mode="RGBA", size=(512,512))
|
| 30 |
-
mask_image = np.array(current_image)[:,:,3] # assume image has alpha mask (use .mode to check for "RGBA")
|
| 31 |
-
mask_image = Image.fromarray(255-mask_image).convert("RGB")
|
| 32 |
-
current_image = current_image.convert("RGB")
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
|
|
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
prev_image = prev_image.convert("RGBA")
|
| 48 |
-
prev_image = np.array(prev_image)
|
| 49 |
-
next_image[:, :, 3] = 1
|
| 50 |
-
next_image[steps:512-steps,steps:512-steps,:] = prev_image
|
| 51 |
-
prev_image = Image.fromarray(next_image)
|
| 52 |
-
current_image = prev_image
|
| 53 |
-
mask_image = np.array(current_image)[:,:,3] # assume image has alpha mask (use .mode to check for "RGBA")
|
| 54 |
-
mask_image = Image.fromarray(255-mask_image).convert("RGB")
|
| 55 |
-
current_image = current_image.convert("RGB")
|
| 56 |
-
images = pipe(prompt=prompt, negative_prompt=negative_prompt, image=current_image, mask_image=mask_image, num_inference_steps=25)[0]
|
| 57 |
-
current_image = images[0]
|
| 58 |
-
current_image.paste(prev_image, mask=prev_image)
|
| 59 |
-
all_frames.append(current_image)
|
| 60 |
-
|
| 61 |
-
save_path = "infinite_zoom_out.mp4"
|
| 62 |
-
write_video(save_path, all_frames, fps=fps)
|
| 63 |
-
return save_path
|
| 64 |
|
| 65 |
|
| 66 |
inputs = [
|
| 67 |
-
gr.
|
| 68 |
gr.inputs.Textbox(lines=5, default=orig_prompt, label="Prompt"),
|
| 69 |
gr.inputs.Textbox(lines=1, default=orig_negative_prompt, label="Negative Prompt"),
|
| 70 |
-
gr.inputs.Slider(minimum=1, maximum=
|
| 71 |
-
gr.inputs.Slider(minimum=1, maximum=
|
| 72 |
-
gr.inputs.Slider(minimum=1, maximum=100, default=16, step=1, label="FPS")
|
|
|
|
| 73 |
]
|
| 74 |
|
| 75 |
output = gr.outputs.Video()
|
| 76 |
examples = [
|
| 77 |
-
["stabilityai/stable-diffusion-2-inpainting", orig_prompt, orig_negative_prompt,
|
| 78 |
]
|
| 79 |
|
| 80 |
title = "Stable Diffusion Infinite Zoom Out"
|
|
@@ -84,7 +72,6 @@ description = """<p>For faster inference without waiting in queue, you may dupli
|
|
| 84 |
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
| 85 |
<p/>"""
|
| 86 |
|
| 87 |
-
|
| 88 |
demo_app = gr.Interface(
|
| 89 |
fn=stable_diffusion_zoom_out,
|
| 90 |
description=description,
|
|
|
|
| 1 |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
| 2 |
+
from utils import write_video, dummy, preprocess_image, preprocess_mask_image
|
| 3 |
from PIL import Image
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import torch
|
| 6 |
import os
|
| 7 |
os.environ["CUDA_VISIBLE_DEVICES"]="0"
|
|
|
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
+
orig_prompt = "Ancient underground architectural ruins of Hong Kong in a flooded apocalypse landscape of dead skyscrapers"
|
| 11 |
orig_negative_prompt = "lurry, bad art, blurred, text, watermark"
|
| 12 |
+
model_list = ["stabilityai/stable-diffusion-2-inpainting", "runwayml/stable-diffusion-inpainting"]
|
| 13 |
|
| 14 |
def stable_diffusion_zoom_out(
|
| 15 |
repo_id,
|
| 16 |
original_prompt,
|
| 17 |
negative_prompt,
|
| 18 |
+
step_size,
|
| 19 |
num_frames,
|
| 20 |
+
fps,
|
| 21 |
+
num_inference_steps
|
| 22 |
+
):
|
| 23 |
|
| 24 |
+
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.float16)
|
| 25 |
+
pipe.set_use_memory_efficient_attention_xformers(True)
|
| 26 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
| 27 |
+
pipe = pipe.to("cuda")
|
| 28 |
+
pipe.safety_checker = dummy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
new_image = Image.new(mode="RGBA", size=(512,512))
|
| 31 |
+
current_image, mask_image = preprocess_mask_image(new_image)
|
| 32 |
+
|
| 33 |
+
current_image = pipe(prompt=[original_prompt], negative_prompt=[negative_prompt], image=current_image, mask_image=mask_image, num_inference_steps=num_inference_steps).images[0]
|
| 34 |
|
| 35 |
+
|
| 36 |
+
all_frames = []
|
| 37 |
+
all_frames.append(current_image)
|
| 38 |
|
| 39 |
+
for i in range(num_frames):
|
| 40 |
+
prev_image = preprocess_image(current_image, step_size, 512)
|
| 41 |
+
current_image = prev_image
|
| 42 |
+
current_image, mask_image = preprocess_mask_image(current_image)
|
| 43 |
+
current_image = pipe(prompt=[original_prompt], negative_prompt=[negative_prompt], image=current_image, mask_image=mask_image, num_inference_steps=num_inference_steps).images[0]
|
| 44 |
+
|
| 45 |
+
current_image.paste(prev_image, mask=prev_image)
|
| 46 |
+
all_frames.append(current_image)
|
| 47 |
|
| 48 |
+
save_path = "output.mp4"
|
| 49 |
+
write_video(save_path, all_frames, fps=fps)
|
| 50 |
+
return save_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
|
| 53 |
inputs = [
|
| 54 |
+
gr.Dropdown(model_list, value=model_list[0], label="Model"),
|
| 55 |
gr.inputs.Textbox(lines=5, default=orig_prompt, label="Prompt"),
|
| 56 |
gr.inputs.Textbox(lines=1, default=orig_negative_prompt, label="Negative Prompt"),
|
| 57 |
+
gr.inputs.Slider(minimum=1, maximum=120, default=25, step=5, label="Steps"),
|
| 58 |
+
gr.inputs.Slider(minimum=1, maximum=100, default=10, step=5, label="Frames"),
|
| 59 |
+
gr.inputs.Slider(minimum=1, maximum=100, default=16, step=1, label="FPS"),
|
| 60 |
+
gr.inputs.Slider(minimum=1, maximum=100, default=15, step=1, label="Inference Steps")
|
| 61 |
]
|
| 62 |
|
| 63 |
output = gr.outputs.Video()
|
| 64 |
examples = [
|
| 65 |
+
["stabilityai/stable-diffusion-2-inpainting", orig_prompt, orig_negative_prompt, 25, 10, 16, 15],
|
| 66 |
]
|
| 67 |
|
| 68 |
title = "Stable Diffusion Infinite Zoom Out"
|
|
|
|
| 72 |
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
| 73 |
<p/>"""
|
| 74 |
|
|
|
|
| 75 |
demo_app = gr.Interface(
|
| 76 |
fn=stable_diffusion_zoom_out,
|
| 77 |
description=description,
|