Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,27 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
|
|
|
4 |
from PIL import Image
|
|
|
|
|
5 |
|
6 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
-
model = models.resnet50(num_classes=1000) # Ensure the model matches your architecture
|
9 |
-
checkpoint = torch.load("resnet50_40epoch_imagenet1k.ckpt", map_location=device) # Replace with your checkpoint path
|
10 |
-
model.load_state_dict(checkpoint['model_state_dict']) # Load state_dict from your checkpoint
|
11 |
model = model.to(device)
|
12 |
-
model.eval()
|
13 |
|
14 |
# Load ImageNet class labels
|
15 |
with open("classes.txt") as f:
|
@@ -23,7 +35,7 @@ preprocess = transforms.Compose([
|
|
23 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
24 |
])
|
25 |
|
26 |
-
#
|
27 |
def predict_top5(image):
|
28 |
# Preprocess the image
|
29 |
image = preprocess(image).unsqueeze(0).to(device)
|
@@ -35,7 +47,7 @@ def predict_top5(image):
|
|
35 |
|
36 |
# Get top-5 predictions
|
37 |
top5_prob, top5_catid = torch.topk(probabilities, 5)
|
38 |
-
top5_results = {class_labels[catid]: prob.item() for prob, catid in zip(top5_prob, top5_catid)}
|
39 |
|
40 |
return top5_results
|
41 |
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
import pytorch_lightning as pl
|
4 |
+
from torchvision import transforms
|
5 |
from PIL import Image
|
6 |
+
from torchvision import models
|
7 |
+
import torch.nn as nn
|
8 |
|
9 |
+
# Define the LightningModule class (should match the training code)
|
10 |
+
class ResNet50Lightning(pl.LightningModule):
|
11 |
+
def __init__(self, num_classes=1000):
|
12 |
+
super().__init__()
|
13 |
+
self.model = models.resnet50(pretrained=False)
|
14 |
+
self.model.fc = nn.Linear(self.model.fc.in_features, num_classes)
|
15 |
+
|
16 |
+
def forward(self, x):
|
17 |
+
return self.model(x)
|
18 |
+
|
19 |
+
# Load the model from PyTorch Lightning checkpoint
|
20 |
+
checkpoint_path = "./resnet50_40epoch_imagenet1k.ckpt" # Replace with your checkpoint file path
|
21 |
+
model = ResNet50Lightning.load_from_checkpoint(checkpoint_path)
|
22 |
+
model.eval() # Set the model to evaluation mode
|
23 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
24 |
model = model.to(device)
|
|
|
25 |
|
26 |
# Load ImageNet class labels
|
27 |
with open("classes.txt") as f:
|
|
|
35 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
36 |
])
|
37 |
|
38 |
+
# Define the prediction function
|
39 |
def predict_top5(image):
|
40 |
# Preprocess the image
|
41 |
image = preprocess(image).unsqueeze(0).to(device)
|
|
|
47 |
|
48 |
# Get top-5 predictions
|
49 |
top5_prob, top5_catid = torch.topk(probabilities, 5)
|
50 |
+
top5_results = {class_labels[catid]: f"{prob.item():.4f}" for prob, catid in zip(top5_prob, top5_catid)}
|
51 |
|
52 |
return top5_results
|
53 |
|