Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,50 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from
|
4 |
-
from model import
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Load your custom model (adjust as necessary for your model's implementation)
|
10 |
model_path = "model.pth" # Replace with the path to your model weights
|
11 |
-
|
12 |
-
model.load_state_dict(
|
13 |
model.eval() # Set the model to evaluation mode
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Function to tokenize input and generate text
|
17 |
def generate_text(prompt, max_length=50):
|
18 |
-
|
19 |
-
input_ids = tokenizer.encode(prompt)
|
20 |
-
input_tensor = torch.tensor([input_ids]) # Add batch dimension
|
21 |
-
|
22 |
-
# Generate text using the model
|
23 |
-
with torch.no_grad():
|
24 |
-
output_ids = model.generate(input_tensor, max_length=max_length) # Adjust if your model uses another method
|
25 |
-
|
26 |
-
# Decode the output back to text
|
27 |
-
generated_text = tokenizer.decode(output_ids[0].tolist())
|
28 |
-
return generated_text
|
29 |
|
30 |
|
31 |
# Gradio interface
|
32 |
with gr.Blocks() as demo:
|
33 |
-
gr.Markdown("#
|
34 |
gr.Markdown("Provide an input text prompt, and the model will generate text based on it.")
|
35 |
|
36 |
with gr.Row():
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
from model import SmollM
|
5 |
+
import yaml
|
6 |
|
7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
+
with open("config.yaml", "r") as f:
|
9 |
+
config = yaml.safe_load(f)
|
10 |
+
|
11 |
+
## Speed up with malmul
|
12 |
+
torch.set_float32_matmul_precision('high')
|
13 |
+
|
14 |
+
# Load model and tokenizer
|
15 |
+
model = SmollM(config['model']['model_config'])
|
16 |
+
|
17 |
+
# Load the tokenizer
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(config['tokenizer']['tokenizer_name_or_path'])
|
19 |
|
20 |
# Load your custom model (adjust as necessary for your model's implementation)
|
21 |
model_path = "model.pth" # Replace with the path to your model weights
|
22 |
+
checkpoint = torch.load(checkpoint_path, map_location=torch.device("cpu"))
|
23 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
24 |
model.eval() # Set the model to evaluation mode
|
25 |
|
26 |
+
def generate_tokens(model, tokenizer, prompt, max_length=50, device="cuda"):
|
27 |
+
"""Generates output tokens based on a given prompt."""
|
28 |
+
model.eval()
|
29 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
30 |
+
with torch.no_grad():
|
31 |
+
outputs = input_ids
|
32 |
+
for _ in range(max_length):
|
33 |
+
logits = model(outputs[:, -1:])
|
34 |
+
next_token = torch.argmax(logits[:, -1, :], dim=-1, keepdim=True)
|
35 |
+
outputs = torch.cat([outputs, next_token], dim=1)
|
36 |
+
if next_token.item() == tokenizer.eos_token_id:
|
37 |
+
break
|
38 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
39 |
|
40 |
# Function to tokenize input and generate text
|
41 |
def generate_text(prompt, max_length=50):
|
42 |
+
return generate_tokens(model, tokenizer, prompt, max_length, device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
|
45 |
# Gradio interface
|
46 |
with gr.Blocks() as demo:
|
47 |
+
gr.Markdown("# SmoLLM-135M Text Generation Demo")
|
48 |
gr.Markdown("Provide an input text prompt, and the model will generate text based on it.")
|
49 |
|
50 |
with gr.Row():
|