File size: 10,204 Bytes
e5f3195
 
 
 
 
 
 
 
 
e80da04
e5f3195
 
29de412
e5f3195
 
 
 
 
 
6374a3c
e5f3195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e80da04
 
e5f3195
 
e80da04
e5f3195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import torch
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel

from PIL import Image
from torchvision import transforms as tfms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, logging
import os
import torch.nn.functional as F
import random

style_guide = [
    ('Oil Painting Style', 'oilstyle_learned_embeds.bin'),
    ('Matrix Style', 'matrix_learned_embeds.bin'),
    ('Stripe Style', 'stripe_learned_embeds.bin'),
    ('Dreamy Painting Style', 'dreamypainting_learned_embeds.bin'),
    ('Polygon HD Style', 'lowpolyhd_learned_embeds.bin')
]

IMAGE_SIZE = 224

# Prep Scheduler
def set_timesteps(scheduler, num_inference_steps):
    scheduler.set_timesteps(num_inference_steps)
    scheduler.timesteps = scheduler.timesteps.to(
        torch.float32)  # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925


def pil_to_latent(input_im):
    # Single image -> single latent in a batch (so size 1, 4, 64, 64)
    with torch.no_grad():
        latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device) * 2 - 1)  # Note scaling
    return 0.18215 * latent.latent_dist.sample()


def latents_to_pil(latents):
    # bath of latents -> list of images
    latents = (1 / 0.18215) * latents
    with torch.no_grad():
        image = vae.decode(latents).sample
    image = (image / 2 + 0.5).clamp(0, 1)
    image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
    images = (image * 255).round().astype("uint8")
    pil_images = [Image.fromarray(image) for image in images]
    return pil_images


def build_causal_attention_mask(bsz, seq_len, dtype):
    mask = torch.full((seq_len, seq_len), float("-inf"), dtype=dtype)
    mask = torch.triu(mask, diagonal=1)  # Upper triangular matrix with -inf
    return mask.unsqueeze(0).expand(bsz, -1, -1)  # Expand for batch size


def get_output_embeds(input_embeddings):
    # CLIP's text model uses causal mask, so we prepare it here:
    bsz, seq_len = input_embeddings.shape[:2]
    # causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
    # Call it in your function
    causal_attention_mask = build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)

    # Getting the output embeddings involves calling the model with passing output_hidden_states=True
    # so that it doesn't just return the pooled final predictions:
    encoder_outputs = text_encoder.text_model.encoder(
        inputs_embeds=input_embeddings,
        attention_mask=None,  # We aren't using an attention mask so that can be None
        causal_attention_mask=causal_attention_mask.to(torch_device),
        output_attentions=None,
        output_hidden_states=True,  # We want the output embs not the final output
        return_dict=None,
    )

    # We're interested in the output hidden state only
    output = encoder_outputs[0]

    # There is a final layer norm we need to pass these through
    output = text_encoder.text_model.final_layer_norm(output)

    # And now they're ready!
    return output


def generate_with_embs(text_embeddings, add_guidance_loss=None, add_guidance_loss_scale=200):
    height = IMAGE_SIZE  # default height of Stable Diffusion
    width = IMAGE_SIZE  # default width of Stable Diffusion
    num_inference_steps = 30  # Number of denoising steps
    guidance_scale = 7.5  # Scale for classifier-free guidance
    generator = torch.manual_seed(random.randint(1, 10000))  # Seed generator to create the inital latent noise
    batch_size = 1

    max_length = text_embeddings.shape[1]
    uncond_input = tokenizer(
        [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
    )
    with torch.no_grad():
        uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
    text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

    # Prep Scheduler
    set_timesteps(scheduler, num_inference_steps)

    # Prep latents
    latents = torch.randn(
        (batch_size, unet.in_channels, height // 8, width // 8),
        generator=generator,
    )
    latents = latents.to(torch_device)
    latents = latents * scheduler.init_noise_sigma

    # Loop
    for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
        # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
        latent_model_input = torch.cat([latents] * 2)
        sigma = scheduler.sigmas[i]
        latent_model_input = scheduler.scale_model_input(latent_model_input, t)

        # predict the noise residual
        with torch.no_grad():
            noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]

        # perform guidance
        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

        if add_guidance_loss:
            #### ADDITIONAL GUIDANCE ###
            if i % 5 == 0:
                # Requires grad on the latents
                latents = latents.detach().requires_grad_()

                # Get the predicted x0:
                latents_x0 = latents - sigma * noise_pred
                # latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample

                # Decode to image space
                denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5  # range (0, 1)

                # Calculate loss
                loss = add_guidance_loss(denoised_images) * add_guidance_loss_scale

                # Occasionally print it out
                if i % 10 == 0:
                    print(i, 'loss:', loss.item())

                # Get gradient
                cond_grad = torch.autograd.grad(loss, latents)[0]

                # Modify the latents based on this gradient
                latents = latents.detach() - cond_grad * sigma ** 2
        # compute the previous noisy sample x_t -> x_t-1
        latents = scheduler.step(noise_pred, t, latents).prev_sample

    return latents_to_pil(latents)[0]


def sharpness_loss(images):
    """Encourages sharp edges by penalizing blurriness in generated images."""
    grad_x = torch.abs(images[:, :, :-1, :] - images[:, :, 1:, :])
    grad_y = torch.abs(images[:, :, :, :-1] - images[:, :, :, 1:])

    # Pad to maintain original shape
    grad_x = F.pad(grad_x, (0, 0, 0, 1))  # Pad height dimension
    grad_y = F.pad(grad_y, (0, 1, 0, 0))  # Pad width dimension

    sharpness = torch.mean(grad_x + grad_y)
    return -sharpness  # Negative sign encourages sharper images


def styled_images(prompt, style_embed):
    # Access the embedding layer
    token_emb_layer = text_encoder.text_model.embeddings.token_embedding

    pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
    position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
    position_embeddings = pos_emb_layer(position_ids)

    # Tokenize
    text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True,
                           return_tensors="pt")
    input_ids = text_input.input_ids.to(torch_device)

    # Get token embeddings
    token_embeddings = token_emb_layer(input_ids)

    if not style_embed:
        input_embeddings = token_embeddings + position_embeddings

        #  Feed through to get final output embs
        modified_output_embeddings = get_output_embeds(input_embeddings)

        return generate_with_embs(modified_output_embeddings, add_guidance_loss=sharpness_loss, add_guidance_loss_scale=200)

    else:
        style_token_embedding = style_embed.to(torch_device)

        # The new embedding. In this case just the input embedding of token 2368...
        # replacement_token_embedding = text_encoder.get_input_embeddings()(torch.tensor(2368, device=torch_device))

        # Insert this into the token embeddings (
        token_embeddings[0, torch.where(input_ids[0] == 22373)] = style_token_embedding.to(torch_device)

        input_embeddings = token_embeddings + position_embeddings

        #  Feed through to get final output embs
        modified_output_embeddings = get_output_embeds(input_embeddings)

        # print(modified_output_embeddings.shape)
        #modified_output_embeddings

        return generate_with_embs(modified_output_embeddings)


def load_learned_embeds(prompt, style):

    path = None
    for s in style_guide:
        if s[0] == style:
            path = './learned-embeds/' + s[1]
            break

    if not path:
        return styled_images(prompt, None)

    #pathlist = Path('./learned-embeds/').glob('*_learned_embeds.bin')
    #learned_embeds = []

    learned_embeds = torch.load(path)
    for k, v in learned_embeds.items():
        print(k, v.shape)
        if v.shape[0] == 768:
            image = styled_images(prompt, v)
            return image


######


torch.manual_seed(10)
#if not (Path.home()/'.cache/huggingface'/'token').exists(): notebook_login()

# Supress some unnecessary warnings when loading the CLIPTextModel
logging.set_verbosity_error()

# Set device
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1"


# Load the autoencoder model which will be used to decode the latents into image space.
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")

# Load the tokenizer and text encoder to tokenize and encode the text.
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")

# The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")

# The noise scheduler
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)

# To the GPU we go!
vae = vae.to(torch_device)
text_encoder = text_encoder.to(torch_device)
unet = unet.to(torch_device)