Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,134 +1,220 @@
|
|
1 |
-
from sentence_transformers import SentenceTransformer
|
2 |
-
from transformers import pipeline
|
3 |
-
from pydantic import BaseModel
|
4 |
-
import faiss
|
5 |
-
import numpy as np
|
6 |
-
import streamlit as st
|
7 |
-
from typing import List
|
8 |
-
import os
|
9 |
-
from dotenv import load_dotenv
|
10 |
-
import google.generativeai as genai
|
11 |
-
import torch
|
12 |
-
import asyncio
|
13 |
-
|
14 |
-
|
15 |
-
try:
|
16 |
-
|
17 |
-
except RuntimeError:
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
device = torch.device("cpu")
|
22 |
-
print("Device set to use CPU")
|
23 |
-
|
24 |
-
|
25 |
-
embedding_model = SentenceTransformer("all-MiniLM-L6-v2", device="cpu")
|
26 |
-
|
27 |
-
|
28 |
-
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=-1) # -1 forces CPU usage
|
29 |
-
|
30 |
-
|
31 |
-
load_dotenv()
|
32 |
-
api_key = os.getenv("API_KEY")
|
33 |
-
|
34 |
-
genai.configure(api_key=api_key)
|
35 |
-
|
36 |
-
|
37 |
-
gemini_model = genai.GenerativeModel(model_name="gemini-2.0-flash")
|
38 |
-
|
39 |
-
|
40 |
-
class UserQuery(BaseModel):
|
41 |
-
|
42 |
-
|
43 |
-
class RetrievedSection(BaseModel):
|
44 |
-
|
45 |
-
|
46 |
-
class SummarizedResponse(BaseModel):
|
47 |
-
|
48 |
-
|
49 |
-
class FinalLLMResponse(BaseModel):
|
50 |
-
|
51 |
-
|
52 |
-
# Query Agent
|
53 |
-
def query_legal_documents(query: UserQuery, top_k=3) -> List[RetrievedSection]:
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
# Summarization Agent
|
76 |
-
def summarize_text(text_sections: List[RetrievedSection]) -> List[SummarizedResponse]:
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
# LLM Agent to refine response
|
86 |
-
def generate_llm_response(summary_text: str) -> FinalLLMResponse:
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
def main():
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
if __name__ == "__main__":
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from sentence_transformers import SentenceTransformer
|
2 |
+
# from transformers import pipeline
|
3 |
+
# from pydantic import BaseModel
|
4 |
+
# import faiss
|
5 |
+
# import numpy as np
|
6 |
+
# import streamlit as st
|
7 |
+
# from typing import List
|
8 |
+
# import os
|
9 |
+
# from dotenv import load_dotenv
|
10 |
+
# import google.generativeai as genai
|
11 |
+
# import torch
|
12 |
+
# import asyncio
|
13 |
+
|
14 |
+
|
15 |
+
# try:
|
16 |
+
# asyncio.get_running_loop()
|
17 |
+
# except RuntimeError:
|
18 |
+
# asyncio.set_event_loop(asyncio.new_event_loop())
|
19 |
+
|
20 |
+
|
21 |
+
# device = torch.device("cpu")
|
22 |
+
# print("Device set to use CPU")
|
23 |
+
|
24 |
+
|
25 |
+
# embedding_model = SentenceTransformer("all-MiniLM-L6-v2", device="cpu")
|
26 |
+
|
27 |
+
|
28 |
+
# summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=-1) # -1 forces CPU usage
|
29 |
+
|
30 |
+
|
31 |
+
# load_dotenv()
|
32 |
+
# api_key = os.getenv("API_KEY")
|
33 |
+
|
34 |
+
# genai.configure(api_key=api_key)
|
35 |
+
|
36 |
+
|
37 |
+
# gemini_model = genai.GenerativeModel(model_name="gemini-2.0-flash")
|
38 |
+
|
39 |
+
|
40 |
+
# class UserQuery(BaseModel):
|
41 |
+
# query: str
|
42 |
+
|
43 |
+
# class RetrievedSection(BaseModel):
|
44 |
+
# text: str
|
45 |
+
|
46 |
+
# class SummarizedResponse(BaseModel):
|
47 |
+
# summary: str
|
48 |
+
|
49 |
+
# class FinalLLMResponse(BaseModel):
|
50 |
+
# response: str
|
51 |
+
|
52 |
+
# # Query Agent
|
53 |
+
# def query_legal_documents(query: UserQuery, top_k=3) -> List[RetrievedSection]:
|
54 |
+
# if not os.path.exists("faiss_index.idx") or not os.path.exists("doc_texts.npy"):
|
55 |
+
# st.error("FAISS index or document data not found.")
|
56 |
+
# return []
|
57 |
+
|
58 |
+
|
59 |
+
# index = faiss.read_index("faiss_index.idx")
|
60 |
+
# doc_texts = np.load("doc_texts.npy", allow_pickle=True)
|
61 |
+
|
62 |
+
|
63 |
+
# query_embedding = embedding_model.encode([query.query], convert_to_numpy=True)
|
64 |
+
|
65 |
+
|
66 |
+
# distances, indices = index.search(query_embedding, top_k)
|
67 |
+
|
68 |
+
|
69 |
+
# retrieved_sections = [
|
70 |
+
# RetrievedSection(text=doc_texts[i]) for i in indices[0] if i < len(doc_texts)
|
71 |
+
# ]
|
72 |
+
|
73 |
+
# return retrieved_sections
|
74 |
+
|
75 |
+
# # Summarization Agent
|
76 |
+
# def summarize_text(text_sections: List[RetrievedSection]) -> List[SummarizedResponse]:
|
77 |
+
# summarized_results = [
|
78 |
+
# SummarizedResponse(
|
79 |
+
# summary=summarizer(section.text, max_length=100, min_length=30, do_sample=False)[0]["summary_text"]
|
80 |
+
# )
|
81 |
+
# for section in text_sections
|
82 |
+
# ]
|
83 |
+
# return summarized_results
|
84 |
+
|
85 |
+
# # LLM Agent to refine response
|
86 |
+
# def generate_llm_response(summary_text: str) -> FinalLLMResponse:
|
87 |
+
# response = gemini_model.generate_content(f"Provide a **brief** response. Do not use any special formatting like **. Here is the input:\n\n{summary_text}")
|
88 |
+
# return FinalLLMResponse(response=response.text)
|
89 |
+
|
90 |
+
|
91 |
+
# def main():
|
92 |
+
# st.set_page_config(page_title="Legal Chatbot", layout="wide")
|
93 |
+
|
94 |
+
|
95 |
+
# st.sidebar.title("Legal Chatbot Settings")
|
96 |
+
# st.sidebar.write("This chatbot helps with legal queries by retrieving relevant legal documents, summarizing them, and generating AI-enhanced responses.")
|
97 |
+
|
98 |
+
|
99 |
+
# st.title("π§ββοΈ Legal Chatbot")
|
100 |
+
# st.markdown("### Ask your legal question below:")
|
101 |
+
|
102 |
+
# user_query = st.text_input("Enter your legal query:")
|
103 |
+
|
104 |
+
# if st.button("Submit", use_container_width=True):
|
105 |
+
# if user_query:
|
106 |
+
# st.info("Processing your request...")
|
107 |
+
|
108 |
+
# query_obj = UserQuery(query=user_query)
|
109 |
+
# retrieved_sections = query_legal_documents(query_obj)
|
110 |
+
|
111 |
+
# if not retrieved_sections:
|
112 |
+
# st.warning("No relevant legal documents found. Try refining your query.")
|
113 |
+
# return
|
114 |
+
|
115 |
+
# summarized_sections = summarize_text(retrieved_sections)
|
116 |
+
|
117 |
+
# # Combine summaries for LLM
|
118 |
+
# combined_summary = "\n".join([res.summary for res in summarized_sections])
|
119 |
+
# llm_response = generate_llm_response(combined_summary)
|
120 |
+
|
121 |
+
# # Display results
|
122 |
+
# st.markdown("### π Retrieved Data from Knowledge Base")
|
123 |
+
# for section in retrieved_sections:
|
124 |
+
# st.markdown(f"πΉ {section.text}")
|
125 |
+
|
126 |
+
# st.markdown("### β¨ Summarized Response")
|
127 |
+
# for res in summarized_sections:
|
128 |
+
# st.markdown(f"β
{res.summary}")
|
129 |
+
|
130 |
+
# st.markdown("### π€ AI-Enhanced Response")
|
131 |
+
# st.text_area("Final Answer:", llm_response.response, height=150)
|
132 |
+
|
133 |
+
# if __name__ == "__main__":
|
134 |
+
# main()
|
135 |
+
|
136 |
+
from sentence_transformers import SentenceTransformer
|
137 |
+
from transformers import pipeline
|
138 |
+
import faiss
|
139 |
+
import numpy as np
|
140 |
+
import streamlit as st
|
141 |
+
import os
|
142 |
+
from dotenv import load_dotenv
|
143 |
+
import google.generativeai as genai
|
144 |
+
import torch
|
145 |
+
|
146 |
+
# Set device to CPU
|
147 |
+
device = "cpu"
|
148 |
+
|
149 |
+
# Load models once
|
150 |
+
embedding_model = SentenceTransformer("all-MiniLM-L6-v2-int8", device=device, normalize_embeddings=True)
|
151 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=-1)
|
152 |
+
|
153 |
+
# Load API Key
|
154 |
+
load_dotenv()
|
155 |
+
api_key = os.getenv("API_KEY")
|
156 |
+
genai.configure(api_key=api_key)
|
157 |
+
gemini_model = genai.GenerativeModel(model_name="gemini-2.0-flash")
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
# Query Legal Documents
|
162 |
+
def query_legal_documents(query: str, top_k=3):
|
163 |
+
if faiss_index is None or doc_texts is None:
|
164 |
+
st.error("FAISS index or document data not found.")
|
165 |
+
return []
|
166 |
+
|
167 |
+
query_embedding = embedding_model.encode([query])
|
168 |
+
distances, indices = faiss_index.search(query_embedding, top_k)
|
169 |
+
|
170 |
+
return [doc_texts[i] for i in indices[0] if i < len(doc_texts)]
|
171 |
+
|
172 |
+
# Summarization Agent (Batch Processing)
|
173 |
+
def summarize_text(text_sections):
|
174 |
+
texts = [section for section in text_sections]
|
175 |
+
summaries = summarizer(texts, max_length=100, min_length=30, do_sample=False)
|
176 |
+
return [summary["summary_text"] for summary in summaries]
|
177 |
+
|
178 |
+
# LLM Agent (Skip if Summaries are Sufficient)
|
179 |
+
def generate_llm_response(summary_text):
|
180 |
+
if len(summary_text) < 200:
|
181 |
+
return summary_text # Skip LLM for short summaries
|
182 |
+
response = gemini_model.generate_content(summary_text)
|
183 |
+
return response.text
|
184 |
+
|
185 |
+
# Streamlit App
|
186 |
+
def main():
|
187 |
+
st.set_page_config(page_title="Legal Chatbot", layout="wide")
|
188 |
+
st.title("π§ββοΈ Legal Chatbot")
|
189 |
+
user_query = st.text_input("Enter your legal query:")
|
190 |
+
|
191 |
+
if st.button("Submit"):
|
192 |
+
if user_query:
|
193 |
+
st.info("Processing your request...")
|
194 |
+
retrieved_sections = query_legal_documents(user_query)
|
195 |
+
|
196 |
+
if not retrieved_sections:
|
197 |
+
st.warning("No relevant legal documents found.")
|
198 |
+
return
|
199 |
+
|
200 |
+
summarized_sections = summarize_text(retrieved_sections)
|
201 |
+
combined_summary = "\n".join(summarized_sections)
|
202 |
+
final_response = generate_llm_response(combined_summary)
|
203 |
+
|
204 |
+
st.markdown("### π Retrieved Data")
|
205 |
+
for section in retrieved_sections:
|
206 |
+
st.markdown(f"πΉ {section}")
|
207 |
+
|
208 |
+
st.markdown("### β¨ Summarized Response")
|
209 |
+
for summary in summarized_sections:
|
210 |
+
st.markdown(f"β
{summary}")
|
211 |
+
|
212 |
+
st.markdown("### π€ AI-Enhanced Response")
|
213 |
+
st.text_area("Final Answer:", final_response, height=150)
|
214 |
+
|
215 |
+
if __name__ == "__main__":
|
216 |
+
main()
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
|