Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,136 +1,136 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
|
20 |
|
21 |
-
|
22 |
-
|
23 |
|
24 |
|
25 |
-
|
26 |
|
27 |
|
28 |
-
|
29 |
|
30 |
|
31 |
-
|
32 |
-
|
33 |
|
34 |
-
|
35 |
|
36 |
|
37 |
-
|
38 |
|
39 |
|
40 |
-
|
41 |
-
|
42 |
|
43 |
-
|
44 |
-
|
45 |
|
46 |
-
|
47 |
-
|
48 |
|
49 |
-
|
50 |
-
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
|
58 |
|
59 |
-
|
60 |
-
|
61 |
|
62 |
|
63 |
-
|
64 |
|
65 |
|
66 |
-
|
67 |
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
|
73 |
-
|
74 |
|
75 |
-
#
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
|
85 |
-
#
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
|
90 |
|
91 |
-
|
92 |
-
|
93 |
|
94 |
|
95 |
-
|
96 |
-
|
97 |
|
98 |
|
99 |
-
|
100 |
-
|
101 |
|
102 |
-
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
|
108 |
-
|
109 |
-
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
|
115 |
-
|
116 |
|
117 |
-
#
|
118 |
-
|
119 |
-
|
120 |
|
121 |
-
#
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
|
130 |
-
|
131 |
-
|
132 |
|
133 |
-
|
134 |
-
|
135 |
|
136 |
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer
|
2 |
+
from transformers import pipeline
|
3 |
+
from pydantic import BaseModel
|
4 |
+
import faiss
|
5 |
+
import numpy as np
|
6 |
+
import streamlit as st
|
7 |
+
from typing import List
|
8 |
+
import os
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
import google.generativeai as genai
|
11 |
+
import torch
|
12 |
+
import asyncio
|
13 |
|
14 |
|
15 |
+
try:
|
16 |
+
asyncio.get_running_loop()
|
17 |
+
except RuntimeError:
|
18 |
+
asyncio.set_event_loop(asyncio.new_event_loop())
|
19 |
|
20 |
|
21 |
+
device = torch.device("cpu")
|
22 |
+
print("Device set to use CPU")
|
23 |
|
24 |
|
25 |
+
embedding_model = SentenceTransformer("all-MiniLM-L6-v2", device="cpu")
|
26 |
|
27 |
|
28 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=-1) # -1 forces CPU usage
|
29 |
|
30 |
|
31 |
+
load_dotenv()
|
32 |
+
api_key = os.getenv("API_KEY")
|
33 |
|
34 |
+
genai.configure(api_key=api_key)
|
35 |
|
36 |
|
37 |
+
gemini_model = genai.GenerativeModel(model_name="gemini-2.0-flash")
|
38 |
|
39 |
|
40 |
+
class UserQuery(BaseModel):
|
41 |
+
query: str
|
42 |
|
43 |
+
class RetrievedSection(BaseModel):
|
44 |
+
text: str
|
45 |
|
46 |
+
class SummarizedResponse(BaseModel):
|
47 |
+
summary: str
|
48 |
|
49 |
+
class FinalLLMResponse(BaseModel):
|
50 |
+
response: str
|
51 |
|
52 |
+
# Query Agent
|
53 |
+
def query_legal_documents(query: UserQuery, top_k=3) -> List[RetrievedSection]:
|
54 |
+
if not os.path.exists("faiss_index.idx") or not os.path.exists("doc_texts.npy"):
|
55 |
+
st.error("FAISS index or document data not found.")
|
56 |
+
return []
|
57 |
|
58 |
|
59 |
+
index = faiss.read_index("faiss_index.idx")
|
60 |
+
doc_texts = np.load("doc_texts.npy", allow_pickle=True)
|
61 |
|
62 |
|
63 |
+
query_embedding = embedding_model.encode([query.query], convert_to_numpy=True)
|
64 |
|
65 |
|
66 |
+
distances, indices = index.search(query_embedding, top_k)
|
67 |
|
68 |
|
69 |
+
retrieved_sections = [
|
70 |
+
RetrievedSection(text=doc_texts[i]) for i in indices[0] if i < len(doc_texts)
|
71 |
+
]
|
72 |
|
73 |
+
return retrieved_sections
|
74 |
|
75 |
+
# Summarization Agent
|
76 |
+
def summarize_text(text_sections: List[RetrievedSection]) -> List[SummarizedResponse]:
|
77 |
+
summarized_results = [
|
78 |
+
SummarizedResponse(
|
79 |
+
summary=summarizer(section.text, max_length=100, min_length=30, do_sample=False)[0]["summary_text"]
|
80 |
+
)
|
81 |
+
for section in text_sections
|
82 |
+
]
|
83 |
+
return summarized_results
|
84 |
|
85 |
+
# LLM Agent to refine response
|
86 |
+
def generate_llm_response(summary_text: str) -> FinalLLMResponse:
|
87 |
+
response = gemini_model.generate_content(f"Provide a **brief** response. Do not use any special formatting like **. Here is the input:\n\n{summary_text}")
|
88 |
+
return FinalLLMResponse(response=response.text)
|
89 |
|
90 |
|
91 |
+
def main():
|
92 |
+
st.set_page_config(page_title="Legal Chatbot", layout="wide")
|
93 |
|
94 |
|
95 |
+
st.sidebar.title("Legal Chatbot Settings")
|
96 |
+
st.sidebar.write("This chatbot helps with legal queries by retrieving relevant legal documents, summarizing them, and generating AI-enhanced responses.")
|
97 |
|
98 |
|
99 |
+
st.title("π§ββοΈ Legal Chatbot")
|
100 |
+
st.markdown("### Ask your legal question below:")
|
101 |
|
102 |
+
user_query = st.text_input("Enter your legal query:")
|
103 |
|
104 |
+
if st.button("Submit", use_container_width=True):
|
105 |
+
if user_query:
|
106 |
+
st.info("Processing your request...")
|
107 |
|
108 |
+
query_obj = UserQuery(query=user_query)
|
109 |
+
retrieved_sections = query_legal_documents(query_obj)
|
110 |
|
111 |
+
if not retrieved_sections:
|
112 |
+
st.warning("No relevant legal documents found. Try refining your query.")
|
113 |
+
return
|
114 |
|
115 |
+
summarized_sections = summarize_text(retrieved_sections)
|
116 |
|
117 |
+
# Combine summaries for LLM
|
118 |
+
combined_summary = "\n".join([res.summary for res in summarized_sections])
|
119 |
+
llm_response = generate_llm_response(combined_summary)
|
120 |
|
121 |
+
# Display results
|
122 |
+
st.markdown("### π Retrieved Data from Knowledge Base")
|
123 |
+
for section in retrieved_sections:
|
124 |
+
st.markdown(f"πΉ {section.text}")
|
125 |
|
126 |
+
st.markdown("### β¨ Summarized Response")
|
127 |
+
for res in summarized_sections:
|
128 |
+
st.markdown(f"β
{res.summary}")
|
129 |
|
130 |
+
st.markdown("### π€ AI-Enhanced Response")
|
131 |
+
st.text_area("Final Answer:", llm_response.response, height=150)
|
132 |
|
133 |
+
if __name__ == "__main__":
|
134 |
+
main()
|
135 |
|
136 |
|