pkiage's picture
initial commit
7ab79fb
raw
history blame
1.55 kB
import streamlit as st
import pandas as pd
from data.utils import *
from visualization.visualize import *
from features.build_features import *
import os
def main():
st.title("Time Series Decomposition Demo")
st.header("Data")
sample_data_selected = st.selectbox(
'Select sample data:', data_set_options)
data = import_sample_data(sample_data_selected, data_set_options)
show_inputted_dataframe(data)
time_series_line_and_box(data)
st.header("Time series decomposition")
decomposition = decompose_time_series(data)
standard_decomposition_plot(decomposition)
[trend, seasonal, residual] = extract_trend_seasonal_resid(decomposition)
with st.expander("Trend Plot"):
st.write('The trend component of the data series.')
st.write('Trend: secular variation(long-term, non-periodic variation)')
time_series_line_plot(trend)
with st.expander("Seasonality Plot"):
st.write('The seasonal component of the data series.')
st.write(
'Seasonality: Periodic fluctuations (often at short-term intervals less than a year).')
time_series_line_plot(seasonal)
with st.expander("Residual Plot"):
st.write('The residual component of the data series.')
st.write('Residual: What remains after the other components have been removed (describes random, irregular influences).')
st.write(f'Residual mean: {residual.mean():.4f}')
time_series_scatter_plot(residual)
if __name__ == "__main__":
main()