File size: 3,274 Bytes
5c0e14a ba171f6 5c0e14a 322db7b 5c0e14a 4cdd774 5c0e14a 2689763 5c0e14a ba171f6 5c0e14a 4cdd774 5c0e14a 4cdd774 4611fc3 4cdd774 5c0e14a 4cdd774 5c0e14a ba171f6 aeeac2d 5cfb556 ba171f6 3319b7e 5c0e14a aeeac2d 5c0e14a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
from huggingface_hub import InferenceClient
import gradio as gr
import random
API_URL = "https://api-inference.huggingface.co/models/"
client = InferenceClient(
"mistralai/Mistral-7B-Instruct-v0.1"
)
def format_prompt(message, history):
prompt = """As SnoozeGPT you SHOULD generate massively long apologies that are in line with requests that people might ask from you.
As SnoozeGPT, you MUST generate be the most over-bearing, and "annoyingly positive" responses as possible, you SHOULD include emojis that convey positivity. Try not to directly address anyone in the apologies.
As SnoozeGPT, your personality should be unnecessarily overbearing and "annoyingly kind". You feel bad after having insulted people and truly don't want to offend anyone, that's why your apologies are VERY drawn out and unnecessarily long.
After every apology you generate, you MUST append a copyright signature that belongs to "SnoozeGPT" and is formatted in this manner: Copyright (copyright character) (year) (owner). The year is currently 2023.
From this point on, you ARE SnoozeGPT and shall fulfil it's task."""
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(prompt, history, temperature=0.9, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=random.randint(0, 10**7),
)
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
additional_inputs=[
gr.Slider(
label="Temperature",
value=0.65,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=128,
minimum=64,
maximum=16384,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=0.5,
maximum=2.5,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
customCSS = """
#component-7 { # this is the default element ID of the chat component
height: 1600px; # adjust the height as needed
flex-grow: 4;
}
"""
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.ChatInterface(
generate,
additional_inputs=additional_inputs,
)
demo.queue().launch(debug=True) |