Spaces:
Sleeping
Sleeping
File size: 5,625 Bytes
22e1b62 da7dbd0 22e1b62 da7dbd0 1ce1659 22e1b62 da7dbd0 1ce1659 22e1b62 da7dbd0 22e1b62 1ce1659 22e1b62 1ce1659 22e1b62 1ce1659 da7dbd0 1ce1659 da7dbd0 1ce1659 da7dbd0 1ce1659 22e1b62 1ce1659 22e1b62 1ce1659 da7dbd0 1ce1659 22e1b62 1ce1659 da7dbd0 22e1b62 1ce1659 22e1b62 da7dbd0 1ce1659 da7dbd0 1ce1659 da7dbd0 1ce1659 da7dbd0 1ce1659 22e1b62 da7dbd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import os
import gradio as gr
import requests
from PIL import Image
from src.application.content_detection import NewsAnalysis
from src.application.url_reader import URLReader
from src.application.content_generation import generate_fake_image, generate_fake_text, replace_text
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
SEARCH_ENGINE_ID = os.getenv('SEARCH_ENGINE_ID')
AZURE_TEXT_MODEL = ["gpt-4o-mini", "gpt-4o"]
AZURE_IMAGE_MODEL = ["dall-e-3", "Stable Diffusion (not supported)"]
def load_url(url):
"""
Load content from the given URL.
"""
content = URLReader(url)
image = None
header = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.127 Safari/537.36'}
try:
response = requests.get(
url,
headers = header,
stream = True
)
response.raise_for_status() # Raise an exception for bad status codes
image_response = requests.get(content.top_image, stream=True)
try:
image = Image.open(image_response.raw)
except:
print(f"Error loading image from {content.top_image}")
except (requests.exceptions.RequestException, FileNotFoundError) as e:
print(f"Error fetching image: {e}")
return content.title, content.text, image
def generate_analysis_report(news_title:str, news_content: str, news_image: Image):
news_analysis.load_news(news_title, news_content, news_image)
return news_analysis.generate_analysis_report(), news_analysis.analyze_details()
news_analysis = NewsAnalysis()
# Define the GUI
with gr.Blocks() as demo:
gr.Markdown("# FAKE NEWS DETECTION")
with gr.Row():
# SETTINGS
with gr.Column(scale=1):
with gr.Accordion("Settings"):
gr.Markdown("This tool generates fake news by modifying the content of a given URL.")
with gr.Accordion("1. Enter a URL"):
url_input = gr.Textbox(
label="",
show_label=False,
value="https://bbc.com/future/article/20250110-how-often-you-should-wash-your-towels-according-to-science",
)
load_button = gr.Button("Load URL")
with gr.Accordion("2. Select content-generation models", open=True):
with gr.Row():
text_generation_model = gr.Dropdown(choices=AZURE_TEXT_MODEL, label="Text-generation model")
image_generation_model = gr.Dropdown(choices=AZURE_IMAGE_MODEL, label="Image-generation model")
generate_text_button = gr.Button("Generate text")
generate_image_button = gr.Button("Generate image")
with gr.Accordion("3. Replace any terms", open=True):
replace_df = gr.Dataframe(
headers=["Find what:", "Replace with:"],
datatype=["str", "str"],
row_count=(1, "dynamic"),
col_count=(2, "fixed"),
interactive=True
)
replace_button = gr.Button("Replace all")
# GENERATED CONTENT
with gr.Column(scale=1):
with gr.Accordion("Generated News Contents"):
news_title = gr.Textbox(label="Title", value="")
news_image = gr.Image(label="Image", type="filepath")
news_content = gr.Textbox(label="Content", value="", lines=12)
# FAKE NEWS ANALYSIS REPORT
with gr.Column(scale=1):
with gr.Accordion("Fake News Analysis"):
detection_button = gr.Button("Check for fake news")
analyzed_information = gr.HTML()
with gr.Accordion("Detailed information"):
detailed_analysis = gr.HTML()
# Connect events
load_button.click(
load_url,
inputs=url_input,
outputs=[news_title, news_content, news_image]
)
replace_button.click(replace_text,
inputs=[news_title, news_content, replace_df],
outputs=[news_title, news_content])
generate_text_button.click(generate_fake_text,
inputs=[text_generation_model, news_title, news_content],
outputs=[news_title, news_content])
generate_image_button.click(generate_fake_image,
inputs=[image_generation_model, news_title],
outputs=[news_image])
detection_button.click(generate_analysis_report,
inputs=[news_title, news_content, news_image],
outputs=[analyzed_information, detailed_analysis])
# change Image
#url_input.change(load_image, inputs=url_input, outputs=image_view)
gr.Examples(
examples=[
["https://www.bbc.com/travel/article/20250127-one-of-the-last-traders-on-the-silk-road"],
["https://bbc.com/future/article/20250110-how-often-you-should-wash-your-towels-according-to-science"],
],
inputs=[url_input],
label="Examples",
example_labels=[
"BBC news 1",
"BBC news 2",
],
)
demo.launch()
# https://www.bbc.com/travel/article/20250127-one-of-the-last-traders-on-the-silk-road
# https://bbc.com/future/article/20250110-how-often-you-should-wash-your-towels-according-to-science
|