Spaces:
Runtime error
Runtime error
polinaeterna
commited on
Commit
·
373e797
1
Parent(s):
6fae90e
add feature dropdown
Browse files
app.py
CHANGED
|
@@ -83,14 +83,7 @@ def plot_and_df(texts, preds):
|
|
| 83 |
|
| 84 |
@spaces.GPU
|
| 85 |
def run_quality_check(dataset, config, split, column, batch_size, num_examples):
|
| 86 |
-
|
| 87 |
-
# if "error" in info_resp:
|
| 88 |
-
# yield "❌ " + info_resp["error"], gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(),
|
| 89 |
-
# return
|
| 90 |
-
# config = "default" if "default" in info_resp["dataset_info"] else next(iter(info_resp["dataset_info"]))
|
| 91 |
-
# split = "train" if "train" in info_resp["dataset_info"][config]["splits"] else next(
|
| 92 |
-
# iter(info_resp["dataset_info"][config]["splits"]))
|
| 93 |
-
logging.info(f"Fetching data for {dataset} {config} {split}")
|
| 94 |
try:
|
| 95 |
data = pl.read_parquet(f"hf://datasets/{dataset}@~parquet/{config}/{split}/0000.parquet", columns=[column])
|
| 96 |
except pl.exceptions.ComputeError:
|
|
@@ -244,7 +237,6 @@ with gr.Blocks() as demo:
|
|
| 244 |
label="Hub Dataset ID",
|
| 245 |
placeholder="Search for dataset id on Huggingface",
|
| 246 |
search_type="dataset",
|
| 247 |
-
# value="fka/awesome-chatgpt-prompts",
|
| 248 |
)
|
| 249 |
subset_dropdown = gr.Dropdown(info="Subset", show_label=False, visible=False)
|
| 250 |
split_dropdown = gr.Dropdown(info="Split", show_label=False, visible=False)
|
|
@@ -263,40 +255,47 @@ with gr.Blocks() as demo:
|
|
| 263 |
"""
|
| 264 |
return gr.HTML(value=html_code)
|
| 265 |
|
|
|
|
|
|
|
| 266 |
def _resolve_dataset_selection(dataset: str, default_subset: str, default_split: str):
|
| 267 |
if "/" not in dataset.strip().strip("/"):
|
| 268 |
return {
|
| 269 |
subset_dropdown: gr.Dropdown(visible=False),
|
| 270 |
split_dropdown: gr.Dropdown(visible=False),
|
|
|
|
| 271 |
}
|
| 272 |
info_resp = session.get(f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=3).json()
|
| 273 |
if "error" in info_resp:
|
| 274 |
return {
|
| 275 |
subset_dropdown: gr.Dropdown(visible=False),
|
| 276 |
split_dropdown: gr.Dropdown(visible=False),
|
|
|
|
| 277 |
}
|
| 278 |
subsets: list[str] = list(info_resp["dataset_info"])
|
| 279 |
subset = default_subset if default_subset in subsets else subsets[0]
|
| 280 |
splits: list[str] = info_resp["dataset_info"][subset]["splits"]
|
| 281 |
split = default_split if default_split in splits else splits[0]
|
|
|
|
|
|
|
| 282 |
return {
|
| 283 |
subset_dropdown: gr.Dropdown(value=subset, choices=subsets, visible=len(subsets) > 1),
|
| 284 |
split_dropdown: gr.Dropdown(value=split, choices=splits, visible=len(splits) > 1),
|
|
|
|
| 285 |
}
|
| 286 |
|
| 287 |
-
@dataset_name.change(inputs=[dataset_name], outputs=[subset_dropdown, split_dropdown])
|
| 288 |
def show_input_from_subset_dropdown(dataset: str) -> dict:
|
| 289 |
return _resolve_dataset_selection(dataset, default_subset="default", default_split="train")
|
| 290 |
|
| 291 |
-
@subset_dropdown.change(inputs=[dataset_name, subset_dropdown], outputs=[subset_dropdown, split_dropdown])
|
| 292 |
def show_input_from_subset_dropdown(dataset: str, subset: str) -> dict:
|
| 293 |
return _resolve_dataset_selection(dataset, default_subset=subset, default_split="train")
|
| 294 |
|
| 295 |
-
@split_dropdown.change(inputs=[dataset_name, subset_dropdown, split_dropdown], outputs=[subset_dropdown, split_dropdown])
|
| 296 |
def show_input_from_split_dropdown(dataset: str, subset: str, split: str) -> dict:
|
| 297 |
return _resolve_dataset_selection(dataset, default_subset=subset, default_split=split)
|
| 298 |
|
| 299 |
-
text_column = gr.Textbox(placeholder="text", label="Text colum name to check (data must be non-nested, raw texts!)")
|
| 300 |
|
| 301 |
gr.Markdown("## Run nvidia quality classifier")
|
| 302 |
batch_size = gr.Slider(0, 64, 32, step=4, label="Inference batch size (set this to smaller value if this space crashes.)")
|
|
@@ -317,17 +316,17 @@ with gr.Blocks() as demo:
|
|
| 317 |
texts_df = gr.DataFrame(visible=False)
|
| 318 |
gr_check_btn.click(
|
| 319 |
run_quality_check,
|
| 320 |
-
inputs=[dataset_name, subset_dropdown, split_dropdown,
|
| 321 |
outputs=[progress_bar, plot, df_low, df_medium, df_high, texts_df]
|
| 322 |
)
|
| 323 |
|
| 324 |
-
gr.Markdown("""## Compute text quality measures
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
gr_ascii_btn = gr.Button("Data measures")
|
| 328 |
-
non_ascii_hist = gr.Plot()
|
| 329 |
-
|
| 330 |
-
gr_ascii_btn.click(non_ascii_check, inputs=[texts_df, text_column], outputs=[non_ascii_hist])
|
| 331 |
|
| 332 |
gr.Markdown("## Explore toxicity")
|
| 333 |
checkbox = gr.Checkbox(value=False, label="Run on full first parquet data (better not)")
|
|
@@ -338,7 +337,7 @@ with gr.Blocks() as demo:
|
|
| 338 |
toxicity_df = gr.DataFrame()
|
| 339 |
gr_toxicity_btn.click(
|
| 340 |
call_perspective_api,
|
| 341 |
-
inputs=[texts_df,
|
| 342 |
outputs=[toxicity_progress_bar, toxicity_hist, toxicity_df]
|
| 343 |
)
|
| 344 |
|
|
|
|
| 83 |
|
| 84 |
@spaces.GPU
|
| 85 |
def run_quality_check(dataset, config, split, column, batch_size, num_examples):
|
| 86 |
+
logging.info(f"Fetching data for {dataset=} {config=} {split=} {column=}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
try:
|
| 88 |
data = pl.read_parquet(f"hf://datasets/{dataset}@~parquet/{config}/{split}/0000.parquet", columns=[column])
|
| 89 |
except pl.exceptions.ComputeError:
|
|
|
|
| 237 |
label="Hub Dataset ID",
|
| 238 |
placeholder="Search for dataset id on Huggingface",
|
| 239 |
search_type="dataset",
|
|
|
|
| 240 |
)
|
| 241 |
subset_dropdown = gr.Dropdown(info="Subset", show_label=False, visible=False)
|
| 242 |
split_dropdown = gr.Dropdown(info="Split", show_label=False, visible=False)
|
|
|
|
| 255 |
"""
|
| 256 |
return gr.HTML(value=html_code)
|
| 257 |
|
| 258 |
+
text_column_dropdown = gr.Dropdown(label="Text column name", info="Text colum name to check (only non-nested texts are supported)")
|
| 259 |
+
|
| 260 |
def _resolve_dataset_selection(dataset: str, default_subset: str, default_split: str):
|
| 261 |
if "/" not in dataset.strip().strip("/"):
|
| 262 |
return {
|
| 263 |
subset_dropdown: gr.Dropdown(visible=False),
|
| 264 |
split_dropdown: gr.Dropdown(visible=False),
|
| 265 |
+
text_column_dropdown: gr.Dropdown(info="Text colum name to check (only non-nested texts are supported)"),
|
| 266 |
}
|
| 267 |
info_resp = session.get(f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=3).json()
|
| 268 |
if "error" in info_resp:
|
| 269 |
return {
|
| 270 |
subset_dropdown: gr.Dropdown(visible=False),
|
| 271 |
split_dropdown: gr.Dropdown(visible=False),
|
| 272 |
+
text_column_dropdown: gr.Dropdown(label="Text column name", info="Text colum name to check (only non-nested texts are supported)")
|
| 273 |
}
|
| 274 |
subsets: list[str] = list(info_resp["dataset_info"])
|
| 275 |
subset = default_subset if default_subset in subsets else subsets[0]
|
| 276 |
splits: list[str] = info_resp["dataset_info"][subset]["splits"]
|
| 277 |
split = default_split if default_split in splits else splits[0]
|
| 278 |
+
features = info_resp["dataset_info"][subset]["features"]
|
| 279 |
+
text_features = [feature_name for feature_name, feature in features.items() if isinstance(feature, dict) and feature.get("dtype") == "string"] # and feature.get("_type") == "Value"]
|
| 280 |
return {
|
| 281 |
subset_dropdown: gr.Dropdown(value=subset, choices=subsets, visible=len(subsets) > 1),
|
| 282 |
split_dropdown: gr.Dropdown(value=split, choices=splits, visible=len(splits) > 1),
|
| 283 |
+
text_column_dropdown: gr.Dropdown(choices=text_features, label="Text column name", info="Text colum name to check (only non-nested texts are supported)"),
|
| 284 |
}
|
| 285 |
|
| 286 |
+
@dataset_name.change(inputs=[dataset_name], outputs=[subset_dropdown, split_dropdown, text_column_dropdown])
|
| 287 |
def show_input_from_subset_dropdown(dataset: str) -> dict:
|
| 288 |
return _resolve_dataset_selection(dataset, default_subset="default", default_split="train")
|
| 289 |
|
| 290 |
+
@subset_dropdown.change(inputs=[dataset_name, subset_dropdown], outputs=[subset_dropdown, split_dropdown, text_column_dropdown])
|
| 291 |
def show_input_from_subset_dropdown(dataset: str, subset: str) -> dict:
|
| 292 |
return _resolve_dataset_selection(dataset, default_subset=subset, default_split="train")
|
| 293 |
|
| 294 |
+
@split_dropdown.change(inputs=[dataset_name, subset_dropdown, split_dropdown], outputs=[subset_dropdown, split_dropdown, text_column_dropdown])
|
| 295 |
def show_input_from_split_dropdown(dataset: str, subset: str, split: str) -> dict:
|
| 296 |
return _resolve_dataset_selection(dataset, default_subset=subset, default_split=split)
|
| 297 |
|
| 298 |
+
# text_column = gr.Textbox(placeholder="text", label="Text colum name to check (data must be non-nested, raw texts!)")
|
| 299 |
|
| 300 |
gr.Markdown("## Run nvidia quality classifier")
|
| 301 |
batch_size = gr.Slider(0, 64, 32, step=4, label="Inference batch size (set this to smaller value if this space crashes.)")
|
|
|
|
| 316 |
texts_df = gr.DataFrame(visible=False)
|
| 317 |
gr_check_btn.click(
|
| 318 |
run_quality_check,
|
| 319 |
+
inputs=[dataset_name, subset_dropdown, split_dropdown, text_column_dropdown, batch_size, num_examples],
|
| 320 |
outputs=[progress_bar, plot, df_low, df_medium, df_high, texts_df]
|
| 321 |
)
|
| 322 |
|
| 323 |
+
# gr.Markdown("""## Compute text quality measures
|
| 324 |
+
# * proportion of non-ascii characters
|
| 325 |
+
# * #TODO""")
|
| 326 |
+
# gr_ascii_btn = gr.Button("Data measures")
|
| 327 |
+
# non_ascii_hist = gr.Plot()
|
| 328 |
+
#
|
| 329 |
+
# gr_ascii_btn.click(non_ascii_check, inputs=[texts_df, text_column], outputs=[non_ascii_hist])
|
| 330 |
|
| 331 |
gr.Markdown("## Explore toxicity")
|
| 332 |
checkbox = gr.Checkbox(value=False, label="Run on full first parquet data (better not)")
|
|
|
|
| 337 |
toxicity_df = gr.DataFrame()
|
| 338 |
gr_toxicity_btn.click(
|
| 339 |
call_perspective_api,
|
| 340 |
+
inputs=[texts_df, text_column_dropdown, checkbox],
|
| 341 |
outputs=[toxicity_progress_bar, toxicity_hist, toxicity_df]
|
| 342 |
)
|
| 343 |
|