File size: 3,467 Bytes
4bba8df
 
 
 
 
 
 
 
 
 
8869f68
4bba8df
8869f68
 
 
 
 
 
471013f
8869f68
4bba8df
af93ecc
4bba8df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8869f68
4bba8df
 
89d4ec8
8869f68
 
 
 
 
 
89d4ec8
 
4bba8df
 
 
 
 
 
 
 
8869f68
4bba8df
444ac6d
 
1849f87
4bba8df
8869f68
4bba8df
 
 
fb1a253
 
 
4bba8df
 
fb1a253
 
 
 
 
8869f68
fb1a253
 
 
4bba8df
fb1a253
8869f68
fb1a253
8869f68
853f29a
4bba8df
 
8869f68
 
4bba8df
8869f68
 
4bba8df
 
 
 
 
8869f68
4bba8df
8869f68
 
 
4bba8df
 
8869f68
4bba8df
 
 
8869f68
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import gradio as gr

import os
import torch
import numpy as np
import pandas as pd
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
from huggingface_hub import HfApi

from collections import defaultdict

from label_dicts import (
    CAP_NUM_DICT,
    CAP_LABEL_NAMES,
    CAP_MIN_NUM_DICT,
    CAP_MIN_LABEL_NAMES,
)

from .utils import is_disk_full, release_model


HF_TOKEN = os.environ["hf_read"]

languages = [
    "Multilingual",
]

domains = {
    "media": "media",
    "social media": "social",
    "parliamentary speech": "parlspeech",
    "legislative documents": "legislative",
    "executive speech": "execspeech",
    "executive order": "execorder",
    "party programs": "party",
    "judiciary": "judiciary",
    "budget": "budget",
    "public opinion": "publicopinion",
    "local government agenda": "localgovernment",
}


def get_label_name(idx):
    minor_code = CAP_MIN_NUM_DICT[idx]
    minor_label_name = CAP_MIN_LABEL_NAMES[minor_code]
    major_code = minor_code // 100 if minor_code not in [99, 999, 9999] else 999
    major_label_name = CAP_LABEL_NAMES[major_code]
    return f"[{major_code}] {major_label_name} [{minor_code}] {minor_label_name}"


def check_huggingface_path(checkpoint_path: str):
    try:
        hf_api = HfApi(token=HF_TOKEN)
        hf_api.model_info(checkpoint_path, token=HF_TOKEN)
        return True
    except:
        return False


def build_huggingface_path(language: str, domain: str):
    if domain in ["social"]:
        return "poltextlab/xlm-roberta-large-twitter-cap-minor"
    return "poltextlab/xlm-roberta-large-pooled-cap-minor-v3"


def predict(text, model_id, tokenizer_id):
    device = torch.device("cpu")

    # Load JIT-traced model
    jit_model_path = f"/data/jit_models/{model_id.replace('/', '_')}.pt"
    model = torch.jit.load(jit_model_path).to(device)
    model.eval()

    # Load tokenizer (still regular HF)
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)

    # Tokenize input
    inputs = tokenizer(
        text, max_length=64, truncation=True, padding=True, return_tensors="pt"
    )
    inputs = {k: v.to(device) for k, v in inputs.items()}

    with torch.no_grad():
        output = model(inputs["input_ids"], inputs["attention_mask"])
        print(output)  # debug
        logits = output["logits"]

    release_model(model, model_id)

    probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()

    output_pred = {get_label_name(i): probs[i] for i in np.argsort(probs)[::-1]}
    output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
    return output_pred, output_info


def predict_cap(text, language, domain):
    domain = domains[domain]
    model_id = build_huggingface_path(language, domain)
    tokenizer_id = "xlm-roberta-large"

    if is_disk_full():
        os.system("rm -rf /data/models*")
        os.system("rm -r ~/.cache/huggingface/hub")

    return predict(text, model_id, tokenizer_id)


demo = gr.Interface(
    title="CAP Minor Topics Babel Demo",
    fn=predict_cap,
    inputs=[
        gr.Textbox(lines=6, label="Input"),
        gr.Dropdown(languages, label="Language", value=languages[0]),
        gr.Dropdown(domains.keys(), label="Domain", value=list(domains.keys())[0]),
    ],
    outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()],
)