File size: 4,385 Bytes
4bba8df
 
 
 
 
 
 
 
 
 
89d4ec8
4bba8df
 
471013f
 
 
 
 
4bba8df
af93ecc
 
 
 
 
4bba8df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c259974
a27d7dd
 
 
 
89d4ec8
c259974
 
89d4ec8
c259974
89d4ec8
 
4bba8df
 
 
 
 
 
 
 
 
1849f87
4bba8df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d98e08
fb44459
 
829404f
fb44459
 
 
 
2490733
fb44459
 
 
 
af93ecc
 
98dfbf2
 
9ec907c
98dfbf2
9ec907c
98dfbf2
fb44459
fb0c046
3772be3
a37d750
fb44459
 
 
 
 
4bba8df
fb44459
4bba8df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb44459
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import gradio as gr

import os
import torch
import numpy as np
import pandas as pd
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
from huggingface_hub import HfApi

from label_dicts import CAP_MIN_NUM_DICT, CAP_MIN_LABEL_NAMES, CAP_LABEL_NAMES 

from .utils import is_disk_full
from itertools import islice

def take(n, iterable):
    """Return the first n items of the iterable as a list."""
    return list(islice(iterable, n))

def score_to_color(prob):
    red = int(255 * (1 - prob))
    green = int(255 * prob)
    return f"rgb({red},{green},0)"

HF_TOKEN = os.environ["hf_read"]

languages = [
    "Multilingual",
]

domains = {
    "media": "media",
    "social media": "social",
    "parliamentary speech": "parlspeech",
    "legislative documents": "legislative",
    "executive speech": "execspeech",
    "executive order": "execorder",
    "party programs": "party",
    "judiciary": "judiciary",
    "budget": "budget",
    "public opinion": "publicopinion",
    "local government agenda": "localgovernment"
}

def convert_minor_to_major(minor_topic):
    if minor_topic == 999:
        major_code = 999
    else:
        major_code = str(minor_topic)[:-2]

    
    label = CAP_LABEL_NAMES[int(major_code)]

    return label
        

def check_huggingface_path(checkpoint_path: str):
    try:
        hf_api = HfApi(token=HF_TOKEN)
        hf_api.model_info(checkpoint_path, token=HF_TOKEN)
        return True
    except:
        return False

def build_huggingface_path(language: str, domain: str):
    return "poltextlab/xlm-roberta-large-pooled-cap-minor-v3"

def predict(text, model_id, tokenizer_id):
    device = torch.device("cpu")
    model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", offload_folder="offload", token=HF_TOKEN)
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)

    inputs = tokenizer(text,
                       max_length=256,
                       truncation=True,
                       padding="do_not_pad",
                       return_tensors="pt").to(device)
    model.eval()

    with torch.no_grad():
        logits = model(**inputs).logits

    probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
    output_pred = {f"[{'999' if str(CAP_MIN_NUM_DICT[i]) == '999' else str(CAP_MIN_NUM_DICT[i])[:-2]}]{convert_minor_to_major(CAP_MIN_NUM_DICT[i])} [{CAP_MIN_NUM_DICT[i]}]{CAP_MIN_LABEL_NAMES[CAP_MIN_NUM_DICT[i]]}": probs[i] for i in np.argsort(probs)[::-1]}


    output_pred = dict(sorted(output_pred.items(), key=lambda item: item[1], reverse=True))
    first_n_items = take(5, output_pred.items())

    html = ""
    first = True
    for label, prob in first_n_items:
        bar_color = "#e0d890" if first else "#ccc"
        text_color = "black"
        bar_width = int(prob * 100)

        bar_color = score_to_color(prob)

        if first:
            html += f"""
            <div style="text-align: center; font-weight: bold; font-size: 30px; margin-bottom: 10px;">
                <span style="color: {text_color};">{label}</span>
            </div>"""

        html += f"""
        <div style="height: 4px; background-color: green; width: {bar_width}%; margin-bottom: 8px;"></div>
        <div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 4px;">
            <span style="color: {text_color};">{label}{int(prob * 100)}%</span>
        </div>
        """
        first = False
    
    
    output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
    return html, output_info

def predict_cap(text, language, domain):
    domain = domains[domain]
    model_id = build_huggingface_path(language, domain)
    tokenizer_id = "xlm-roberta-large"
    
    if is_disk_full():
        os.system('rm -rf /data/models*')
        os.system('rm -r ~/.cache/huggingface/hub')
        
    return predict(text, model_id, tokenizer_id)

demo = gr.Interface(
    title="CAP Minor Topics Babel Demo",
    fn=predict_cap,
    inputs=[gr.Textbox(lines=6, label="Input"),
            gr.Dropdown(languages, label="Language"),
            gr.Dropdown(domains.keys(), label="Domain")],
    outputs=[gr.HTML(label="Output"), gr.Markdown()])