File size: 2,688 Bytes
c9436a5
 
 
 
 
 
 
 
 
 
 
 
853f29a
c9436a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb1a253
 
 
c9436a5
 
fb1a253
 
 
 
 
 
 
 
 
 
 
 
 
c9436a5
fb1a253
 
 
 
853f29a
c9436a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e50d6e
c9436a5
 
2b41a25
883e5e9
2b41a25
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import gradio as gr

import os
import torch
import numpy as np
import pandas as pd
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
from huggingface_hub import HfApi

from label_dicts import CAP_MEDIA_NUM_DICT, CAP_MEDIA_LABEL_NAMES

from .utils import is_disk_full, release_model

HF_TOKEN = os.environ["hf_read"]

languages = [
    "Multilingual",
]

domains = {
    "media": "media"
}

def check_huggingface_path(checkpoint_path: str):
    try:
        hf_api = HfApi(token=HF_TOKEN)
        hf_api.model_info(checkpoint_path, token=HF_TOKEN)
        return True
    except:
        return False

def build_huggingface_path(language: str, domain: str):
    return "poltextlab/xlm-roberta-large-pooled-cap-media"

def predict(text, model_id, tokenizer_id):
    device = torch.device("cpu")

    # Load JIT-traced model
    jit_model_path = f"/data/jit_models/{model_id.replace('/', '_')}.pt"
    model = torch.jit.load(jit_model_path).to(device)
    model.eval()

    # Load tokenizer (still regular HF)
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)

    # Tokenize input
    inputs = tokenizer(
        text,
        max_length=256,
        truncation=True,
        padding="do_not_pad",
        return_tensors="pt"
    )
    inputs = {k: v.to(device) for k, v in inputs.items()}

    with torch.no_grad():
        output = model(inputs["input_ids"], inputs["attention_mask"])
        print(output) # debug
        logits = output["logits"]
        
    release_model(model, model_id)

    probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
    output_pred = {f"[{CAP_MEDIA_NUM_DICT[i]}] {CAP_MEDIA_LABEL_NAMES[CAP_MEDIA_NUM_DICT[i]]}": probs[i] for i in np.argsort(probs)[::-1]}
    output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
    return output_pred, output_info

def predict_cap(text, language, domain):
    domain = domains[domain]
    model_id = build_huggingface_path(language, domain)
    tokenizer_id = "xlm-roberta-large"
    
    if is_disk_full():
        os.system('rm -rf /data/models*')
        os.system('rm -r ~/.cache/huggingface/hub')
        
    return predict(text, model_id, tokenizer_id)

demo = gr.Interface(
    title="CAP Media Topics Babel Demo",
    fn=predict_cap,
    inputs=[gr.Textbox(lines=6, label="Input"),
            gr.Dropdown(languages, label="Language", value=languages[0]),
            gr.Dropdown(domains.keys(), label="Domain", value=list(domains.keys())[0])],
    outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])