Spaces:
Running
Running
File size: 2,515 Bytes
b1c2932 3a6eb20 b1c2932 853f29a 4bba8df b1c2932 4bba8df b1c2932 4bba8df b1c2932 4bba8df b1c2932 fb1a253 b1c2932 fb1a253 b1c2932 fb1a253 853f29a b1c2932 3a6eb20 b1c2932 4bba8df b1c2932 4bba8df b1c2932 4bba8df b1c2932 2b41a25 4bba8df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
import gradio as gr
import os
import torch
import numpy as np
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
from huggingface_hub import HfApi
from label_dicts import EMOTION6_LABEL_NAMES
from .utils import is_disk_full, release_model
HF_TOKEN = os.environ["hf_read"]
languages = [
"Czech", "English", "French", "German", "Hungarian", "Polish", "Slovak"
]
domains = {
"parliamentary speech": "parlspeech",
}
def build_huggingface_path(language: str):
if language == "Czech" or language == "Slovak":
return "visegradmedia-emotion/Emotion_RoBERTa_pooled_V4"
return "poltextlab/xlm-roberta-large-pooled-MORES"
def predict(text, model_id, tokenizer_id):
device = torch.device("cpu")
# Load JIT-traced model
jit_model_path = f"/data/jit_models/{model_id.replace('/', '_')}.pt"
model = torch.jit.load(jit_model_path).to(device)
model.eval()
# Load tokenizer (still regular HF)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
# Tokenize input
inputs = tokenizer(
text,
max_length=256,
truncation=True,
padding="do_not_pad",
return_tensors="pt"
)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
output = model(inputs["input_ids"], inputs["attention_mask"])
print(output) # debug
logits = output["logits"]
release_model(model, model_id)
probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
output_pred = {EMOTION6_LABEL_NAMES[i]: probs[i] for i in np.argsort(probs)[::-1]}
output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
return output_pred, output_info
def predict_cap(text, language, domain):
model_id = build_huggingface_path(language)
tokenizer_id = "xlm-roberta-large"
if is_disk_full():
os.system('rm -rf /data/models*')
os.system('rm -r ~/.cache/huggingface/hub')
return predict(text, model_id, tokenizer_id)
demo = gr.Interface(
title="Emotions (6) Babel Demo",
fn=predict_cap,
inputs=[gr.Textbox(lines=6, label="Input"),
gr.Dropdown(languages, label="Language", value=languages[1]),
gr.Dropdown(domains.keys(), label="Domain", value=list(domains.keys())[0])],
outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])
|