File size: 2,554 Bytes
4bba8df
 
 
 
 
 
 
 
 
 
 
853f29a
4bba8df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb1a253
 
 
4bba8df
 
fb1a253
 
 
 
 
 
 
 
 
 
 
 
 
4bba8df
fb1a253
 
 
 
853f29a
4bba8df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b41a25
 
4bba8df
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import gradio as gr

import os
import torch
import numpy as np
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
from huggingface_hub import HfApi

from label_dicts import EMOTION9_LABEL_NAMES

from .utils import is_disk_full, release_model

HF_TOKEN = os.environ["hf_read"]

languages = [
    "Czech", "English", "German", "Hungarian", "Polish", "Slovak"
]
domains = {
    "parliamentary speech": "parlspeech",
}

def build_huggingface_path(language: str):
    language = language.lower()
    return f"poltextlab/xlm-roberta-large-pooled-{language}-emotions9"

def predict(text, model_id, tokenizer_id):
    device = torch.device("cpu")

    # Load JIT-traced model
    jit_model_path = f"/data/jit_models/{model_id.replace('/', '_')}.pt"
    model = torch.jit.load(jit_model_path).to(device)
    model.eval()

    # Load tokenizer (still regular HF)
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)

    # Tokenize input
    inputs = tokenizer(
        text,
        max_length=256,
        truncation=True,
        padding="do_not_pad",
        return_tensors="pt"
    )
    inputs = {k: v.to(device) for k, v in inputs.items()}

    with torch.no_grad():
        output = model(inputs["input_ids"], inputs["attention_mask"])
        print(output) # debug
        logits = output["logits"]
        
    release_model(model, model_id)

    probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()

    NUMS_DICT = {i: key for i, key in enumerate(sorted(EMOTION9_LABEL_NAMES.keys()))}
    output_pred = {f"[{NUMS_DICT[i]}] {EMOTION9_LABEL_NAMES[NUMS_DICT[i]]}": probs[i] for i in np.argsort(probs)[::-1]}
    output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
    return output_pred, output_info

def predict_e6(text, language, domain):
    model_id = build_huggingface_path(language)
    tokenizer_id = "xlm-roberta-large"

    if is_disk_full():
        os.system('rm -rf /data/models*')
        os.system('rm -r ~/.cache/huggingface/hub')
        
    return predict(text, model_id, tokenizer_id)

demo = gr.Interface(
    title="Emotions (9) Babel Demo",
    fn=predict_e6,
    inputs=[gr.Textbox(lines=6, label="Input"),
            gr.Dropdown(languages, label="Language", value=languages[1]),
            gr.Dropdown(domains.keys(), label="Domain", value=list(domains.keys())[0])],
    outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])