babel_machine / interfaces /manifesto.py
kovacsvi
config jit issue
3a6eb20
raw
history blame
2.63 kB
import gradio as gr
import os
import torch
import numpy as np
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
from huggingface_hub import HfApi
from label_dicts import MANIFESTO_LABEL_NAMES, MANIFESTO_NUM_DICT
from .utils import is_disk_full, release_model
HF_TOKEN = os.environ["hf_read"]
languages = [
"Armenian", "Bulgarian", "Croatian", "Czech", "Danish", "Dutch", "English",
"Estonian", "Finnish", "French", "Georgian", "German", "Greek", "Hebrew",
"Hungarian", "Icelandic", "Italian", "Japanese", "Korean", "Latvian",
"Lithuanian", "Norwegian", "Polish", "Portuguese", "Romanian", "Russian",
"Serbian", "Slovak", "Slovenian", "Spanish", "Swedish", "Turkish"
]
def build_huggingface_path(language: str):
return "poltextlab/xlm-roberta-large-manifesto"
def predict(text, model_id, tokenizer_id):
device = torch.device("cpu")
# Load JIT-traced model
jit_model_path = f"/data/jit_models/{model_id.replace('/', '_')}.pt"
model = torch.jit.load(jit_model_path).to(device)
model.eval()
# Load tokenizer (still regular HF)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
# Tokenize input
inputs = tokenizer(
text,
max_length=256,
truncation=True,
padding="do_not_pad",
return_tensors="pt"
)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
output = model(inputs["input_ids"], inputs["attention_mask"])
print(output) # debug
logits = output["logits"]
release_model(model, model_id)
probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
output_pred = {f"[{model.config.id2label[i]}] {MANIFESTO_LABEL_NAMES[int(MANIFESTO_NUM_DICT[i])]}": probs[i] for i in np.argsort(probs)[::-1]}
output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
return output_pred, output_info
def predict_cap(text, language):
model_id = build_huggingface_path(language)
tokenizer_id = "xlm-roberta-large"
if is_disk_full():
os.system('rm -rf /data/models*')
os.system('rm -r ~/.cache/huggingface/hub')
return predict(text, model_id, tokenizer_id)
demo = gr.Interface(
title="Manifesto Babel Demo",
fn=predict_cap,
inputs=[gr.Textbox(lines=6, label="Input"),
gr.Dropdown(languages, label="Language", value=languages[6])],
outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])