babel_machine / interfaces /cap_minor.py
kovacsvi
JIT tracing
fb1a253
import gradio as gr
import os
import torch
import numpy as np
import pandas as pd
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
from huggingface_hub import HfApi
from label_dicts import CAP_MIN_NUM_DICT, CAP_MIN_LABEL_NAMES, CAP_LABEL_NAMES
from .utils import is_disk_full, release_model
from itertools import islice
def take(n, iterable):
"""Return the first n items of the iterable as a list."""
return list(islice(iterable, n))
def score_to_color(prob):
red = int(255 * (1 - prob))
green = int(255 * prob)
return f"rgb({red},{green},0)"
HF_TOKEN = os.environ["hf_read"]
languages = [
"Multilingual",
]
domains = {
"media": "media",
"social media": "social",
"parliamentary speech": "parlspeech",
"legislative documents": "legislative",
"executive speech": "execspeech",
"executive order": "execorder",
"party programs": "party",
"judiciary": "judiciary",
"budget": "budget",
"public opinion": "publicopinion",
"local government agenda": "localgovernment"
}
def convert_minor_to_major(minor_topic):
if minor_topic == 999:
major_code = 999
else:
major_code = str(minor_topic)[:-2]
label = CAP_LABEL_NAMES[int(major_code)]
return label
def check_huggingface_path(checkpoint_path: str):
try:
hf_api = HfApi(token=HF_TOKEN)
hf_api.model_info(checkpoint_path, token=HF_TOKEN)
return True
except:
return False
def build_huggingface_path(language: str, domain: str):
return "poltextlab/xlm-roberta-large-pooled-cap-minor-v3"
def predict(text, model_id, tokenizer_id):
device = torch.device("cpu")
# Load JIT-traced model
jit_model_path = f"/data/jit_models/{model_id.replace('/', '_')}.pt"
model = torch.jit.load(jit_model_path).to(device)
model.eval()
# Load tokenizer (still regular HF)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
# Tokenize input
inputs = tokenizer(
text,
max_length=256,
truncation=True,
padding="do_not_pad",
return_tensors="pt"
)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
output = model(inputs["input_ids"], inputs["attention_mask"])
print(output) # debug
logits = output["logits"]
release_model(model, model_id)
probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
output_pred = {f"[{'999' if str(CAP_MIN_NUM_DICT[i]) == '999' else str(CAP_MIN_NUM_DICT[i])[:-2]}]{convert_minor_to_major(CAP_MIN_NUM_DICT[i])} [{CAP_MIN_NUM_DICT[i]}]{CAP_MIN_LABEL_NAMES[CAP_MIN_NUM_DICT[i]]}": probs[i] for i in np.argsort(probs)[::-1]}
output_pred = dict(sorted(output_pred.items(), key=lambda item: item[1], reverse=True))
first_n_items = take(5, output_pred.items())
html = ""
html += '<div style="background-color: white">'
first = True
for label, prob in first_n_items:
bar_color = "#e0d890" if first else "#ccc"
text_color = "black"
bar_width = int(prob * 100)
bar_color = score_to_color(prob)
if first:
html += f"""
<div style="text-align: center; font-weight: bold; font-size: 27px; margin-bottom: 10px; margin-left: 10px; margin-right: 10px;">
<span style="color: {text_color};">{label}</span>
</div>"""
html += f"""
<div style="height: 4px; background-color: green; width: {bar_width}%; margin-bottom: 8px;"></div>
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 4px;">
<span style="color: {text_color};">{label}{int(prob * 100)}%</span>
</div>
"""
first = False
html += '</div>'
output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
return html, output_info
def predict_cap(text, language, domain):
domain = domains[domain]
model_id = build_huggingface_path(language, domain)
tokenizer_id = "xlm-roberta-large"
if is_disk_full():
os.system('rm -rf /data/models*')
os.system('rm -r ~/.cache/huggingface/hub')
return predict(text, model_id, tokenizer_id)
demo = gr.Interface(
title="CAP Minor Topics Babel Demo",
fn=predict_cap,
inputs=[gr.Textbox(lines=6, label="Input"),
gr.Dropdown(languages, label="Language", value=languages[0]),
gr.Dropdown(domains.keys(), label="Domain", value=list(domains.keys())[0])],
outputs=[gr.HTML(label="Output"), gr.Markdown()])