babel_machine / interfaces /manifesto.py
kovacsvi
manifesto fix
a55b33f
import gradio as gr
import os
import torch
import numpy as np
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
from huggingface_hub import HfApi
from label_dicts import MANIFESTO_LABEL_NAMES, MANIFESTO_NUM_DICT
from .utils import is_disk_full, release_model
HF_TOKEN = os.environ["hf_read"]
languages = [
"Armenian", "Bulgarian", "Croatian", "Czech", "Danish", "Dutch", "English",
"Estonian", "Finnish", "French", "Georgian", "German", "Greek", "Hebrew",
"Hungarian", "Icelandic", "Italian", "Japanese", "Korean", "Latvian",
"Lithuanian", "Norwegian", "Polish", "Portuguese", "Romanian", "Russian",
"Serbian", "Slovak", "Slovenian", "Spanish", "Swedish", "Turkish"
]
def build_huggingface_path(language: str):
return "poltextlab/xlm-roberta-large-manifesto"
def predict(text, model_id, tokenizer_id):
device = torch.device("cpu")
# Load JIT-traced model
jit_model_path = f"/data/jit_models/{model_id.replace('/', '_')}.pt"
model = torch.jit.load(jit_model_path).to(device)
model.eval()
# Load tokenizer (still regular HF)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
# Tokenize input
inputs = tokenizer(
text,
max_length=256,
truncation=True,
padding="do_not_pad",
return_tensors="pt"
)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
output = model(inputs["input_ids"], inputs["attention_mask"])
print(output) # debug
logits = output["logits"]
release_model(model, model_id)
probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
output_pred = {f"[{MANIFESTO_NUM_DICT[i]}] {MANIFESTO_LABEL_NAMES[int(MANIFESTO_NUM_DICT[i])]}": probs[i] for i in np.argsort(probs)[::-1]}
output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
return output_pred, output_info
def predict_cap(text, language):
model_id = build_huggingface_path(language)
tokenizer_id = "xlm-roberta-large"
if is_disk_full():
os.system('rm -rf /data/models*')
os.system('rm -r ~/.cache/huggingface/hub')
return predict(text, model_id, tokenizer_id)
demo = gr.Interface(
title="Manifesto Babel Demo",
fn=predict_cap,
inputs=[gr.Textbox(lines=6, label="Input"),
gr.Dropdown(languages, label="Language", value=languages[6])],
outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])