Spaces:
Running
Running
kovacsvi
commited on
Commit
·
2180861
1
Parent(s):
c9b32c5
use cuda:0 as torch device
Browse files- interfaces/cap.py +3 -2
- interfaces/cap_minor_media.py +5 -3
interfaces/cap.py
CHANGED
@@ -85,14 +85,15 @@ def build_huggingface_path(language: str, domain: str):
|
|
85 |
|
86 |
@spaces.GPU(duration=5)
|
87 |
def predict(text, model_id, tokenizer_id):
|
88 |
-
|
|
|
89 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
|
90 |
|
91 |
inputs = tokenizer(text,
|
92 |
max_length=256,
|
93 |
truncation=True,
|
94 |
padding="do_not_pad",
|
95 |
-
return_tensors="pt")
|
96 |
model.eval()
|
97 |
|
98 |
with torch.no_grad():
|
|
|
85 |
|
86 |
@spaces.GPU(duration=5)
|
87 |
def predict(text, model_id, tokenizer_id):
|
88 |
+
device = torch.device("cuda:0")
|
89 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", offload_folder="offload", token=HF_TOKEN).to(device)
|
90 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
|
91 |
|
92 |
inputs = tokenizer(text,
|
93 |
max_length=256,
|
94 |
truncation=True,
|
95 |
padding="do_not_pad",
|
96 |
+
return_tensors="pt").to(device)
|
97 |
model.eval()
|
98 |
|
99 |
with torch.no_grad():
|
interfaces/cap_minor_media.py
CHANGED
@@ -59,6 +59,8 @@ def build_huggingface_path(language: str, domain: str):
|
|
59 |
|
60 |
@spaces.GPU(duration=5)
|
61 |
def predict(text, major_model_id, minor_model_id, tokenizer_id, HF_TOKEN=None):
|
|
|
|
|
62 |
# Load major and minor models + tokenizer
|
63 |
major_model = AutoModelForSequenceClassification.from_pretrained(
|
64 |
major_model_id,
|
@@ -66,7 +68,7 @@ def predict(text, major_model_id, minor_model_id, tokenizer_id, HF_TOKEN=None):
|
|
66 |
device_map="auto",
|
67 |
offload_folder="offload",
|
68 |
token=HF_TOKEN
|
69 |
-
)
|
70 |
|
71 |
minor_model = AutoModelForSequenceClassification.from_pretrained(
|
72 |
minor_model_id,
|
@@ -74,12 +76,12 @@ def predict(text, major_model_id, minor_model_id, tokenizer_id, HF_TOKEN=None):
|
|
74 |
device_map="auto",
|
75 |
offload_folder="offload",
|
76 |
token=HF_TOKEN
|
77 |
-
)
|
78 |
|
79 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
|
80 |
|
81 |
# Tokenize input
|
82 |
-
inputs = tokenizer(text, max_length=256, truncation=True, padding="do_not_pad", return_tensors="pt")
|
83 |
|
84 |
# Predict major topic
|
85 |
major_model.eval()
|
|
|
59 |
|
60 |
@spaces.GPU(duration=5)
|
61 |
def predict(text, major_model_id, minor_model_id, tokenizer_id, HF_TOKEN=None):
|
62 |
+
device = torch.device("cuda:0")
|
63 |
+
|
64 |
# Load major and minor models + tokenizer
|
65 |
major_model = AutoModelForSequenceClassification.from_pretrained(
|
66 |
major_model_id,
|
|
|
68 |
device_map="auto",
|
69 |
offload_folder="offload",
|
70 |
token=HF_TOKEN
|
71 |
+
).to(device)
|
72 |
|
73 |
minor_model = AutoModelForSequenceClassification.from_pretrained(
|
74 |
minor_model_id,
|
|
|
76 |
device_map="auto",
|
77 |
offload_folder="offload",
|
78 |
token=HF_TOKEN
|
79 |
+
).to(device)
|
80 |
|
81 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
|
82 |
|
83 |
# Tokenize input
|
84 |
+
inputs = tokenizer(text, max_length=256, truncation=True, padding="do_not_pad", return_tensors="pt").to(device)
|
85 |
|
86 |
# Predict major topic
|
87 |
major_model.eval()
|